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Broadly, homological algebra is the study of homomorphisms between algebraic structures such

as groups, rings, and modules. One of the most basic motivations to study homological algebra is

the observation that the Isomorphism Theorems hold in each of the aforementioned settings, hence

it is natural to seek to generalize these theorems to all algebraic structures that behave like groups,



rings, and modules. In this section, we will develop many of the tools needed throughout this note;
we refer the interested reader to [Rot09] for many more interesting details.
Unless otherwise stated, we assume that a commutative ring R possesses a multiplicative iden-

tity 1g. Given any R-modules M and N, we may consider the set of R-module homomorphisms

Homg(M,N) ={¢ : M — N | ¢ is an R-module homomorphism}.

One can readily verify that Homg (M, N) is itself an R-module via the action (r- @)(x) = re(x).

Our next two propositions illuminate key properties of Homg(M,N) we will soon exploit.
Proposition 1.1. Let M be an R-module. We have that Homg(R,M) = M as R-modules.

Proof. Observe that an R-module homomorphism ¢ : R — M is uniquely determined by @(1g).
Explicitly, for any element r € R, we have that ¢(r) = re(1g), hence ¢ can be identified with
the R-module homomorphism that sends r — r¢(1g). Consequently, we obtain an R-module ho-
momorphism y : Homg(R,M) — M defined by y(¢) = @(1g). Clearly, it is surjective: for each
element m € M, choose the R-module homomorphism ¢ : R — M defined by ¢(r) = rm. Likewise,
we have that ¢ € ker y if and only if ¢(1z) = Og if and only if ¢(r) = O for all elements r € R if

and only if ¢ is the zero homomorphism. We conclude that y is an R-module isomorphism. [

Observe that for any R-module homomorphisms & : A — B and 8 : B — C, there exists an R-
module homomorphism 3o : A — C. Consequently, for any R-module homomorphism f3 : B— C,

there is a map Homg (A, B) : Homg(A, B) — Homg(A,C) defined by Homg (A, B)(a) = Bo a.

Proposition 1.2. Let R be a commutative ring. Let A be an R-module. Let % be the category of
R-modules. The map Homg(A,—) : Z — % that sends B to Homg(A, B) and sends an R-module

homomorphism B : B — C to the R-module homomorphism Homg(A, B) is a covariant functor.

Proof. We have already established that Homg(A,B) is an R-module for any R-module B. By
definition of covariant functor, it suffices to show that (1.) Homg(A,idg) = idgomy,(4,8) for any R-

module B and (2.) Homg (A, yo ) = Homg(A,y) cHomg(A, ) for any R-module homomorphisms
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B:B— Candy:C— D. Observe that Homg(A,idg)(a)(a) = (idgoox)(a) = a(a) for every R-
module homomorphism ¢ : A — B and every element a € A, hence (1.) holds. Likewise, we have
that Homg (A, Yo B)(a) = yo B oa = yoHomg(A,B) () = Homg(A,y) cHomg(A, B)(a) for any

R-module homomorphisms o : A — B, 3 : B— C, and y: C — D so that (2.) holds. [l

Likewise, for any R-module homomorphisms ¢ : A — B and 3 : B— C, there is an induced map
Homg(a,C) : Homg(B,C) — Homg(A,C) defined by Homg(ct,C)(B) = B o @. One can demon-
strate in a manner analogous to Proposition that the map Homg(—,C) : #Z — % that sends B to
Homg(B,C) and sends an R-module homomorphism & : A — B to the R-module homomorphism
Homg (o, C) is a contravariant functor, i.e., Homg (B o a,C) = Homg(ct,C) o Homg(f3,C).

We say that a sequence of R-modules and R-module homomorphisms A 4B £> Cisexactat B
whenever ker f = img . Consequently, a sequence of R-modules and R-module homomorphisms

e M M, o, M, 4 Pl s exact whenever it is exact at M; for each integer i. Particularly, a

sequence 0 — A % B P, € = 0is a short exact sequence if and only if C = ker(C — 0) = imgf3

(i.e., B is surjective), ker B = img o, and ker ¢ = img(0 — A) = 0 (i.e., « is injective).

Proposition 1.3. Let M and N be R-modules. If 0 — A % B £> C — 0 is a short exact sequence of

Homg(M, Homg(M,
R-modules, the sequences 0 — Homg(M,A) M omg(M,3)

Homg(B,N) Homg(a,N)
S —

Homg(M,B) Homg(M,C) and

0 — Homg(C,N) Homg(B,N) Homg(A,N) are also exact. Consequently,

the functors Homg(M, —) and Homg(—,N) are left-exact on the category of R-modules.

Proof. We will prove the first claim; the second follows analogously. By Proposition [I.2] the first
sequence 1s well-defined, so it suffices to prove that it is exact. Consider an R-module homomor-
phism ¢ : M — A such that ot o ¢ = Homg(M, @)(¢) is the zero homomorphism. By hypothesis,
we have that keroe = 0 and ot o ¢(x) = 0 for all elements x € M, hence we conclude that ¢ is the
zero homomorphism. Consequently, the first sequence is exact at Homg(M,A).

By assumption that ker B = img «, it follows that 8 o &t o @ is the zero homomorphism for any
R-module homomorphism ¢ : M — A. Conversely, take an R-module homomorphism y : M — B

such that B o y is the zero homomorphism. By definition, we have that y(x) belongs to ker 3



for all elements x € M. Considering that ker 8 = img o by assumption, for each element x € M,
there exists an element a, € A such that y(x) = a(ay). By hypothesis that ¢ and o are R-module
homomorphisms, for every element x € M and r € R, there exist elements a,,ay,a,, € A such
that a(rax+ay) = rot(ax) + at(ay) = ry(x) + (y) = Y(rx +y) = t(arety) and rax+ ay = apeyy
by assumption that « is injective. We conclude that the map 6 : M — A defined by o(x) = ay is an
R-module homomorphism that satisfies Y = o o ¢, from which it follows that y is in the image of

Homg (M, o), i.e., the first sequence is exact at Homg (M, B). O

Our previous proposition ensures that if we apply the covariant functor Homg (M, —) to any
B

short exact sequence of R-modules 0 — A 4LB5C— 0, we obtain an exact sequence of R-

Homg (M, ) Homg (M, f3)
S —

modules 0 — Homg(M,A) Homg(M, B)

Homg (M, )
—

Homg (M, C); however, the in-

duced cochain complex 0 — Homg(M,A) Homg (M, B) Home(MB), Homg(M,C) — 01is
exact at Homg (M, C) if and only if Homg (M, B) is surjective if and only if for every R-module ho-

momorphism ¢ : M — C, there exists an R-module homomorphism y : M — B such that ¢ = Boy.

Proposition 1.4. Let R be a commutative ring. We say that an R-module P is projective if it

satisfies any of the following equivalent conditions.

1) If0—A %4 B E> C — 0 is a short exact sequence of R-modules, then the sequence

Homg(P,3)

mmR—(RO‘)> Homg(P,B) ————— Homg(P,C) — 0

0 — Homg(P,A)

is exact, i.e., the functor Homg (P, —) is right-exact on the category of R-modules.

(ii.) If B : B— C is a surjective R-module homomorphism and ¢ : P — C is any R-module homo-

morphism, then there exists an R-module homomorphism  : P — B such that ¢ = o y.

(iii.) There exist R-modules B and C, a surjective R-module homomorphism B, and R-modules
homomorphisms @ and y such that the following diagram commutes.

P
Hy/// l‘P




(iv.) Every short exact sequence O — A 4B E) P — 0 of R-modules splits. Explicitly, there exists
an R-module isomorphism Y : B — A @ C such that y o & is the first component inclusion

map A — A®C and B oy~ is the second component projection map A®C — C.
(v.) There exists an R-module Q such that P® Q is a free R-module.

Proof. By Proposition [I.3] one can readily deduce that the first three conditions are equivalent,
so it suffices to prove that (ii.) = (iv.) = (v.) = (i.). Consider a short exact sequence
of R-modules 0 — A % B g P — 0. By hypothesis, there exists an R-module homomorphism

v : P — B such that idp = 8 o y. Particularly, the following diagram of R-modules commutes.

P
ylidp
> B B>P >

By assumption that f3 is surjective, for any element p € P, there exists an element b € B such that

0 s A —2 0

p=B(b) and y(p) = yo B(b). Conversely, for every element b € B, we have that B(b) € P, and

we may consider the element y o () of B. Ultimately, for any element b € B, observe that

B(b—yoB(b) = B(b)—BowoB(b) = B(b)—idpoB(b) = B(b) — B(b) =0

so that b — y o B(b) belongs to ker . By hypothesis that ker B = img o, there exists an element
a € Asuchthatb—yof(b) = a(a)and b= o(a)+ yoB(b). We conclude that B=imga+img y.
We claim moreover that img a Nimg y = {0}. For if x € img o Nimg y, then a(a) = x = y(y) for
some elements a € A and y € P. Consequently, we have that y = Boy(y) = B(x) = Booa(a) =0
and x = y(y) = y(0) = 0. We conclude that B = img o @ img ¥ = A & P, where the isomorphism
follows from the fact that o is injective by hypothesis and y is injective because 3 is a left-inverse.
Ultimately, the R-module isomorphism ¢ : B— A® P defined by ¢(a(a)+ w(p)) = (a, p) satisfies
that ¢ o ¢t is the inclusion map A — A @ P and 8o ¢! is the projection map A® P — P.

Every R-module is the homomorphic image of a free R-module. Particularly, there exists a

free R-module F and an R-module K such that 0 - K — F — P — 0 is a short exact sequence of



R-modules. If condition (iv.) holds, then we have that F = P$ K is a free R-module.

Last, we will assume that property (v.) holds. Consider a short exact sequence of R-modules
0 —+ A — B — C — 0 with the surjective map 3 : B — C specified. We claim that Homg(P, —) is
right-exact, i.e., we must show that for every R-module homomorphism ¢ : P — C, there exists an
R-module homomorphism y : P — B such that ¢ = 8 o . By hypothesis, there exists an R-module
Q such that F = P® Q is free. Consequently, there exists an R-module basis 8 = {f; | i € I} of
F. Let p : P — F denote the first component inclusion map, and let ¢ : FF — P denote the second
component projection map. By assumption that 8 is surjective, every element of C can be written
as B(b) for some element b € B. We may therefore find elements b; of B such that (b;) = ¢ oo (f;)
for each index i. By the freeness of F, there exists a unique homomorphism 7y : F — B such that
Y(f;) = b;. Observe that Boy(f;) = B(b;)) = @oo(f;) sothat Boy= @oo0, as £ is a basis. We
conclude that = pocop = foyop = oy for the map ¥ = yop € Homg(P,B). O

Corollary 1.5. Every free R-module is projective.

By Proposition if we apply the contravariant functor Homg(—,N) to any short exact se-

quences of R-modules 0 — A 4B E> C — 0, we obtain an exact sequence of R-modules 0 —

Homg(C,N) HomR—(ﬁN)> Homg(B,N) M Homg (A, N). Like before, the induced map Homg (o, N)

is surjective if and only if for every R-module homomorphism ¢ : A — N, there exists an R-module

homomorphism y : B — N such that ¢ = yo .

Proposition 1.6. Let R be a commutative ring. We say that an R-module Q is injective if it satisfies

any of the following equivalent conditions.

1) If0—A %4 B E) C — 0 is a short exact sequence of R-modules, then the sequence

) Homg(B,0) Homg(,0)

0 — Homg(C,Q Homg(B, Q) Homg(A,Q) — 0

is exact, i.e., the functor Homg(—, Q) is right-exact on the category of R-modules.



(ii.) If a : A — B is an injective R-module homomorphism and ¢ : A — Q is any R-module homo-

morphism, then there exists an R-module homomorphism y : B — Q such that ¢ = yo .

(i11.) There exist R-modules A and B, an injective R-module homomorphism o, and R-modules

homomorphisms @ and y such that the following diagram commutes.

(iv.) Every short exact sequence 0 — Q 4B E> C — 0 of R-modules splits. Explicitly, there exists

an R-module isomorphism ¢ : B — Q & C such that Wy o « is the first component inclusion

map Q — Q@ C and B oy~ is the second component projection map Q®C — C.
(v.) If Q is an R-submodule of M, then there exists an R-module P such that M = P& Q.

Proof. Conditions (i.), (ii.), and (iii.) are equivalent by Proposition [I.3] so it suffices to establish
that (iii.) = (iv.) = (v.) = (ii.). Observe that any short exact sequence of R-modules whose

first nonzero term is Q can be completed to a commutative diagram of R-modules as follows.

0
S
ldQT \\\fhll

0 » 0 —%5 B sy C > 0

Consequently, the R-module homomorphism y : B — Q satisfies idg = y o o. Given any element

b € B, we have that b = aco y(b) + (b — ato y(b)). Observe that

y(b—aoy(b))=y(b)—yoaoy(b)=y(b)—yb)=0,

hence we have that b — @ o y(b) € ker y. We conclude that B =img o + ker y. Even more, the sum
is direct: if b € imga Nker y, then b = a(q) so that 0 = y(b) = yoa(q) =gand b= a(0) = 0.
By hypothesis that ¢ is injective, we find that imgo = Q. On the other hand, for every element

¢ € C, there exists an element b € B such that ¢ = B(b). Considering that B = img o & ker y, there



exist unique elements ¢ € Q and x € ker y such that ¢ = (b)) = B(o(g) +x) = B(x), where the
third equality follows from the fact that ker § = img . We conclude that ker y = C. Ultimately, we
find that B = img o & ker y = Q & C via the R-module homomorphism y(o(g) +x) = (g, B(x)).
Observe that if Q is an R-submodule of M, then the inclusion Q C M induces a short exact
sequence of R-modules 0 — Q — M — M/Q — 0. If every short exact sequence of R-modules
splits, then we have that M = Q & (M /Q), hence Q is a direct summand of M.
We prove (v.) = (ii.) as a corollary of a later proposition. Explicitly, Q is an R-submodule

of an injective R-module E, so it is a direct summand of E. But this implies that Q is injective. []
Our next example illustrates that some modules are neither projective nor injective.

Example 1.7. Let n > 2 be an integer. Let M = Z/nZ be the cyclic group of order n. Observe
that M is a Z-module because it is an abelian group; however, it is not projective because for
any abelian group G, the Z-module (Z/nZ) ® G has torsion. On the other hand, multiplication
by n is an injective Z-module homomorphism n- : Z — Z; however, for the canonical surjection
7 : Z — M, there does not exist a Z-module homomorphism Y : Z — M such that 7 = y o n, as

the latter is always zero. Consequently, the Z-module Z/nZ is neither projective nor injective.

Consequently, we may seek to measure the injective (or projective) “defect” of a module over
a commutative unital ring. We define this notion rigorously as follows.

Let M be an R-module. We say that a sequence of R-modules and R-module homomorphisms

Z Z Z g I—
Zo:o 27, 2 2720 B 20 B M0

is a (left) resolution of M if Z, is exact at M and Z; for each integer i > 0. If the R-modules Z; are
free for each integer i > 0, then Z, is simply called a free resolution of M.
Proposition 1.8. Every R-module admits a free resolution.

Proof. Let M be an R-module. Observe that there exists a free R-module F indexed by M and a

surjective R-module homomorphism fj : Fp — M; its kernel injects into Fy via the inclusion map
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i : ker fo — Fp. Considering that ker fj is an R-module, there exists a free R-module F] indexed by
ker fy and a surjective R-module homomorphism 7; : F; — ker fy. Consequently, the composition
f1 =ipom yields a map f; : F| — Fp such that img f; = img ) = ker fy. Likewise, the R-module
ker 7y injects into F| via the inclusion map i : kerm; — Fj, and there exists a free R-module F;
indexed by ker m; and a surjective R-module homomorphism 7, : F;, — ker ;. Consequently, the
composition f, = i o, yields a map f> : F, — Fj such that img f, = imgn, = kerm; = ker fi.

Continuing in this manner produces the following commutative diagram of R-modules.

ker 7
\
F Ja . F /3 . Fy f2 , Fy S . Fy fo . M J- . 0
Tiz Tm
ker 1, ker fo

Consequently, the sequence Fj is a resolution of M in which each of the R-modules F; is free. [J

Combined, Proposition |1.8| and Corollary imply that any R-module M admits a projective
resolution, i.e., a (left) resolution P, : - - - LGN P, LN EN P LEN Py 200 v 2215 0 in which P is

projective for each integer i > 0. Given an R-module N, consider the cochain complex

Homg(Ps,N) : 0 — Homg(Py,N) 2% Homg(P;,N) 25 .- 2% Hompg(P,,N) % - -

with cochain maps defined by p; = Homg(p;1,N) for each integer i > 0. We define the ith co-
homology module Exty(M,N) = kerp;/imgp} | for each integer i > 0. Crucially, Cartan and
Eilenberg demonstrated that Ext}} (M,N) is independent of the choice of a projective resolution of

M, hence the R-modules Exth (M, N) are well-defined (cf. [Rot09, Proposition 6.56]).
Proposition 1.9. Let N be an R-module. The following properties hold.
(1.) We have that Exty(M,N) = Homg(M,N) for all R-modules M.

(2.) Every short exact sequence of R-modules 0 — M’ — M — M" — 0 induces an exact sequence

-+ — Extly 1(M" N) — Exth(M',N) — Exth(M,N) — Exth(M",N) — Exty™ ' (M/ ,N) — - .

9



(3.) We have that Extﬁe (M,N) =0 foralli > 1 and all R-modules M if and only if N is injective.

Proof. (1.) Consider a projective resolution P, of M that ends with the terms P; LN Py 2% M — 0.

By Proposition we may apply Homg(—,N) to obtain the sequence of R-modules

Homg(po,N) Homg(p1,N)
— —

0 — Homg (M, N) Homg (Py,N) Homg (Py,N)

exact in the first two places. Consequently, we find that ker p; = img Homg(po,N) = Homg(M,N)
by the First Isomorphism Theorem. We conclude that Ext}(M,N) = ker pj; = Homg (M, N).

(3.) We assume first that N is injective. By Proposition the functor Homg(—,N) is exact,
hence for any R-module M and any projective resolution P, of M, the induced cochain complex
Homg(Ps,N) is exact. We conclude that Ext, (M, N) = 0 for all integers i > 1. Conversely, suppose
that Ext}e (M,N) =0 for all i > 1 and all R-modules M. Consequently, for any short exact sequence
of R-modules 0 — M’ — M — M" — 0, there exists a long exact sequence of R-modules that begins
0 — Homg(M”,N) — Homg(M,N) — Homg(M’,N) — 0. By Proposition[L.4] N is injective.

We omit the proof of property (2.), but we refer the reader to [Rot09, Corollary 6.46]. [

One can show that Exti(—,N) is a contravariant functor from the category of R-modules to
itself that preserves multiplication (cf. [Rot09, Theorem 6.37 and Proposition 6.38]), hence Propo-
sition |1.9|implies that the functors Ext}é(—,N ) measure the injective “defect” of N.

One might naturally expect that in order to rigorously define the projective “defect” of an R-
module M, we must look at the cohomology modules of the induced cochain complex obtained
by applying Homg (M, —) to an injective resolution of some R-module; however, it is unclear that
an arbitrary R-module admits an injective resolution. Consequently, we must first establish that
every R-module admits an injective resolution; then, we will proceed in a manner analogous to
the exposition preceding Proposition[I.9] We begin by constructing a functor from the category of

R-modules to itself that forms an “adjoint pair” with the covariant functor Homg (M, —).
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2 Tensor Products and Tor

Let M and N be R-modules. Consider the free R-module F with basis M x N. Explicitly, we view
F as the set of all finite formal R-linear combinations of pairs of elements of F' with pointwise
addition and scalar multiplication. Let % denote the R-submodule of F generated by all elements
of the form (m; + my,n) — (my,n) — (mp,n), (m,ny +ny) — (m,ny) — (m,nz), (rm,n) — r(m,n),
and (m,rn) — r(m,n) for any element r € R. We define the tensor product of M and N with
respect to R as the quotient R-module M @ N = F /% . Observe that every element of M @ N is
of the form Z{le ri(mi,n;) + % for some integer k > 0, some elements ry,...,r; € R, and some
distinct elements my,...,m; € M, and ny,...,n; € N. Conventionally, we write such an element as
Zle ri(m; ®g n;); elements of the form m ®g n are called the pure tensors of M ®r N, hence by
definition, the pure tensors generated M ®g N as an R-module. Even more, by construction, there
is a canonical R-module homomorphism 7: M x N — M ®@g N defined by (m,n) — mQgn; it is R-
bilinear, i.e., it satisfies T(m; +my,n) = t(my,n) + t(ma,n), T(m,n; +ny) = t(m,ny) + t(m,ny),
and T(rm,n) = rt(m,n) = t(m,rn) for all elements m,m;,m, € M, n,ny,n, € N, and r € R.

One can alternatively describe the tensor product of M and N with respect to R as the unique
solution to the following universal mapping problem. Given any R-modules M and N, we seek an
R-module 7" and a bilinear R-module homomorphism 7 : M x N — T such that for any R-module L
and any bilinear R-module homomorphism ¢ : M x N — L, there exists a unique bilinear R-module

homomorphism y: T — L such that ¢ = yo 7 (cf. [Gatl3] Propositions 5.4 and 5.5]).

Proposition 2.1 (Universal Property of the Tensor Product). Let R be a commutative ring. Let M
and N be R-modules. If L is an R-module such that there exists a bilinear R-module homomorphism
@ : M x N — L, then there exists a unique bilinear R-module homomorphism y: M Qg N — L such

that @ = yo 7, i.e., such that the following diagram of R-modules commutes.

MxN i > MQrN

Unsurprisingly, the [Universal Property of the Tensor Product| yields an abundance of results.
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Proposition 2.2. Let R be a commutative ring. Let M and N be R-modules.
(1.) We have that M Qg N =N Qr M.

(2.) We have that R@QrM =M.

(3.) We have that (R/I) @g M = M /IM for any ideal I of R.

(4.) For any (possibly infinite) index set I and any family of R-modules (M,)ic;, we have that

(BiciMi) @r N = @B;c;(M; ®r N), i.e., the tensor product commutes with direct sums.

Proof. (1.) By the [Universal Property of the Tensor Product] the bilinear R-module homomor-

phisms 6y : M XN - N®@gM and 0, : N X M — M ®@g N defined by o1(m,n) = n®gm and

0>(n,m) = m Qg n induce the following commutative diagrams of R-modules.

MxN —2 5 M@gN NxM —2 5 NogM
7 In 7 I
NQrM MKrN

We claim that y; and 9 are inverses, hence they are isomorphisms. Observe that for every element
(m,n) € M x N, we have that 7,(n,m) = n ®gm = o1(m,n) =y, o t1(m,n) = y(m g n). Con-
sequently, we find that 9 o ¥ (m ®gn) = 1 o a(n,m) = 6»(n,m) = m g n so that ¥ 07y is the
identity homomorphism on the pure tensors of M ®g N. Considering that the pure tensors gener-
ated M ®p N as an R-module, we conclude that ; o ¥ is the identity homomorphism on M Qg N.
Conversely, 71 o 7 is the identity homomorphism on N ®g M, as desired.

(2.) By definition, the R-module action of R on M induces a bilinear R-module homomorphism

U : R x M — M defined by p(r,m) = rm. Once again, the|[Universal Property of the Tensor Product]

guarantees the existence of a bilinear R-module homomorphism ¥ : R ®@r M — M that satisfies
rm = u(r,m) = yot(r,m) =y(r®@gm) for all elements (r,m) € R x M. We will construct an inverse
homomorphism for y. Consider the map ¢ : M — R®g M defined by ¢@(m) = 1g @g m. By the
properties of the tensor product, ¢ is an R-module homomorphism. Observe that for every element
m € M, we have that m = 1gm = y(1g @gm) = yo ¢(m). Conversely, for any pure tensor r Qg m,

we have that r @gm = r(1g @gm) = ro(m) = @(rm) = @ o y(r Qg m).

12



(3.) We may view M/IM as an R/I-module via the action (r+1)-(m+IM) = rm+ IM.

Consequently, we obtain a bilinear R-module homomorphism p : (R/I) x M — M /IM defined by

W (r—+1,m) = rm+ IM; the Universal Property of the Tensor Product|ensures that there is a bilinear

R-module homomorphism y: (R/I) @g M — M /IM that sends (r+1) @gm — rm+ IM. We claim
that the R-linear map ¢ : M/IM — (R/I) @g M defined by ¢(m+IM) = (1g +1) @g m is well-
defined. If m 4+ IM = n+ IM, then there exist elements r{,...,r; € [ and x1,...,x; € M such that

m—n = rix| +--- + rix;. Considering that r; +1 = Og 4 I for each integer 1 < i < k, we find that

(I +1) ®@r (m—n) = (1g +1) ®g (Zk‘,rix,) Zk‘, [(ri+1) ®rxi] =0

i=1 i=1

so that @(m+IM) = (1g+1)@rm = (1g+1) @gn = @(n+ IM). One can check in a manner
analogous to the previous paragraph the ¢ and 7y are inverse homomorphisms.
(4.) Given any (possibly infinite) index set I and any family of R-modules (M;);c;, the tensor

product yields a bilinear R-module homomorphism & : (@;c; M;) X N = @,c;(M; @r N) that sends

((mj)ier,n) — (m; ®rn)ecs. By the|Universal Property of the Tensor Product, there exists a bilinear

R-module homomorphism ¥ : (B;c; M;) @k N — @;c;(M; ®g N) such that 6 = yo 1. Likewise,
for each index i € I, there exists an R-module homomorphism @; : M; Qg N — (P,;c;Mi) @r N
that sends m; @g n +— (8;jm;) je; ®r n for the Kronecker delta §;;. By definition, the elements of
@ic;(M; ®r N) are I-tuples with finitely many nonzero components, hence we obtain an R-module
homomorphism @ : @;c;(M; @rN) — (B;c;Mi) ®r N that sends (m; @rn)icr — Yic; @i(m; @gn).

One can readily verify that y and ¢ are inverses on the pure tensors, hence they are inverses. [l
Our next proposition extends the notion of a tensor product to R-module homomorphisms.

Proposition 2.3. Let R be a commutative ring. Let @ : M — M' and v : N — N’ be R-module
homomorphisms. There exists a bilinear R-module homomorphism Yp v : M Qg N — M' Qg N’
defined by Yo w(m®gn) = @(m) @ y(n). Consequently, the assignment (@ Qr W) = Yo,y induces
an R-module homomorphism 1 : Homg(M,M") @ g Homg(N,N') — Homg(M Qg N,M’ g N').

Proof. Consider the map 0 : M x N — M’ ®@g N’ defined by o (m,n) = ¢(m) @ ¢(n). By hypoth-
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esis that ¢ and y are R-module homomorphisms, it follows that ¢ is a bilinear R-module homo-

morphism by construction of the tensor product. Consequently, by the [Universal Property of thel

(Tensor Product, there exists a unique bilinear R-module homomorphism ¥y y : M @g N — M' @ N’

defined by Yy y(m ®@rn) = @(m) ®g y(n). Put another way, the assignment 1(¢ ®g Y¥) = Y,y in-
duces a well-defined map 1 : Homg(M,M’) @g Homg(N,N') — Homg(M Qg N,M' @g N'); it is

not difficult to verify that 1 is R-linear, but we leave the details to the reader. 0

Remark 2.4. Often, the induced R-module homomorphism ¥y y : M @g N — M’ @g N’ is denoted

simply by ¢ ®r y; this is an abuse of notation, but the meaning is clear.

Corollary 2.5. Let R be a commutative ring. Let M be an R-module. Let % be the category of
R-modules. The map M Qg — : # — X that sends A to M Qg A and sends an R-module homomor-

phism @ : A — A’ to the R-module homomorphism idy; Qr@ is a covariant functor.

Proof. By construction, M ®g N is an R-module for any R-module N; we need only establish that
(1.) idyy ®gidy = idpye,n for any R-module N and (2.) idy ®@g(y o @) = (idy @rY) o (idy Qr )
for any R-module homomorphisms @ : N — N" and v : N' — N”. By Remark we have that
(idy ®gidy)(m®@gn) = m@gn = idye,n (Mg n); because these maps agree on the pure tensors of
M ®@g N, they are equal as homomorphisms. On the other hand, for any R-module homomorphisms
@ :N— N and y : N — N”, we have that (idy @g(y o @))(m®@gn) =m®g (Yo @(n)) and

similarly (idy @z Y) o (idyy @r@)(m@gn) = (idy QrRY) (Mg @(n)) =m g (Yo @(n)). O

Given a functor from the category of R-modules to itself, one naturally wonders about its
behavior on short exact sequences of R-modules. By Corollary [2.5] for any short exact sequence

of R-modules 0 — A = B £> C — 0 and any R-module M, we obtain an induced sequence of

. "
R-modules M @r A M M ®rB M M ®g C. By hypothesis that 3 is surjective, for each
element ¢ € C, there exists an element b € B such that ¢ = (b). Consequently, for each pure tensor
m Qg c of M Qg C, there exists a pure tensor m @g b of M ®g B such that m Qg c = m Qg B(b).

Considering that the pure tensors of M ®r C generate it as an R-module, we conclude that the

induced map idy; g : M ®gr B — M Qg C is surjective; this proves the following.
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Proposition 2.6. Let M be an R-module. If 0 — A 4B £> C — 0 is a short exact sequence of

. -
R-modules, then the induced sequence M Qg A M M&grB M MRrC — 0is also exact.

Consequently, the functor M Qg — is right-exact on the category of R-modules.

Proposition 2.7. Let R be a commutative ring. We say that an R-module L if flat if it satisfies any

of the following equivalent conditions.

1) If0—A %4 B £> C — 0 is a short exact sequence of R-modules, then the sequence

i id
0 LopA L2k 1 o g lorP o0

is exact, i.e., the functor L&g — is left-exact on the category of R-modules.

(ii.) If a : A — B is an injective R-module homomorphism, then the induced R-module homomor-

phismid; Qra : LOrA — L Qg B is injective.
(iii.) For any ideal I of R, the map id; Qi : L&Qr I — L that sends { Qg r — rl is injective.

Proof. Conditions (i.) and (ii.) are equivalent by Proposition[2.6] Considering that the inclusion
I C R of an ideal I of R induces an injective R-module homomorphism, it follows that (ii.) implies

(iii.). We refer the reader to [Rot09, Proposition 3.58] for the proof that (iii.) implies (i.). ]
Corollary 2.8. Every commutative ring R is flat as a module over itself.

Proof. Consider an injective R-module homomorphism o : A — B. By Proposition [2.22.), there
exist R-module isomorphisms ¢ : A — R®rA and y : B— R®g B defined by ¢(a) = 1g ®ga and
y(b) = 1g ®g b. Observe that yo ot(a) = 1g ®g &t(a) = (idg @rx) o @(a) for all elements a € A,
hence yo o and (idg ®gex) o @ are equal as R-module homomorphisms. Considering that @, v,

and « are injective, idg @ gx must be injective, from which it follows that R is a flat R-module. []

Corollary 2.9. Let R be a commutative ring. A direct sum of R-modules is flat if and only if each

direct summand is flat. Particularly, any free R-module is flat.
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Proof. Let (L;)ics be a family of R-modules indexed by some (possibly infinite) set I. Consider
an injective R-module homomorphism ¢ : A — B. For each index i € I, there exists an R-module
homomorphismid;, ®rot : L; Qg A — L; Qg B; together, these induce an R-module homomorphism
Y: @Djc;(Li®rA) — D,c;(Li ®r B) that acts as idz, @go on the ith component of the direct sum.
By Proposition [2.23.), there exists R-module isomorphisms @ : @;c;(L; ®rA) — (Pje; Li) Qr A
and ¥ : @;;(Li ®r B) = (Djc;Li) @r B. Let S = @, Li. Observe that y oy and (ids @rox) o ¢
are equal on the pure tensors of @;c;(L; ®grA), hence they are equal as R-module homomorphisms.
Consequently, S = @,¢;L; is flat if and only if ids ®r o is injective if and only if ¥ is injective if
and only if idz, ®ga is injective for all indices if and only if each direct summand L; is flat.

Last, a free R-module is flat by Corollary [2.8] as it is a direct sum of copies of R. [
Corollary 2.10. Let R be a commutative ring. Every projective R-module is flat.

Proof. By Proposition [I.4(v.), a projective R-module is a direct summand of a free R-module.

Every free R-module is flat; a direct summand of a flat R-module is flat by Corollary 2.9 [
Corollary 2.11. Over a local ring, a finitely generated flat module is free.

Proof. Let (R,m) be a local ring. Let L be a finitely generated flat R-module. Consider a sys-

tem of generators xj,...,x, of L whose images in L/mL form an R/m-vector space basis. By
INakayama’s Lemmal we have that L = R(xy,...,x,). Consequently, the canonical R-module homo-
morphism 7 : R" — L defined by 7(ry,...,r,) = rix; +-- -+ rpx, induces a short exact sequence of

R-modules 0 » K 5 R" 5 L — 0, where K =kerm and i : K — R" is the inclusion. By Proposition
there exists an exact sequence of R-modules (R/m) @gr K — (R/m) ®gR" — (R/m) QgL — 0.
Combining (2.) and (4.) of Proposition we obtain an exact sequence of R/m-vector spaces
K/(mK) — (R/m)" — L/(mL) — 0 (cf. the discussion following Definition 4.9). By hypothe-
sis, the R/m-vector space dimension of L/(mL) is n, so the Rank-Nullity Theorem implies that

K/(mK) =0 and mK = K. Corollary yields ker 7 = K = 0 so that L is a free R-module. [

Even if the ring is not local, a flat module over a Noetherian ring is projective.
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Proposition 2.12. [Rot09, Corollary 3.57] Over a Noetherian ring, a finitely generated flat module

is projective. Particularly, flatness and projectivity are equivalent.
Generally, the tensor product fails to preserve left-exactness of short exact sequences.

Example 2.13. Let n > 2 be an integer. Let M = Z/nZ be the cyclic group of order n. Observe that
the multiplication map -n : Z — Z is injective because Z is a domain; however, the induced map

(Z/nZ) @R 7. 2 (Z./nZ) @R 7 is identically zero. Consequently, Z/nZ is not flat as a Z-module.

Like before, we may rigorously define the flat “defect" of an R-module M as follows. Begin
. . . Ly n 1 4 ¢
with a projective resolution L, : -+ —— L, £—> L (]—1> Ly -5 N — 0 of some R-module N.

(By Corollary [2.10} this is a flat resolution of N.) Consider the induced chain complex

E3
n+1

J4 v 05 ox
M@gLe: - =S5 ML, 2 S MpL —>M®grLy— 0

with chain maps defined by ¢; = idy ®g{; for each integer i > 0. We define the ith homology
module Tor®(M,N) = kerl; /img/; | for each integer i > 0; these are independent of the choice

of a projective resolution of N, hence they are well-defined (cf. [Rot09, Corollary 6.21]).
Proposition 2.14. Let M be an R-module. The following properties hold.

(1.) We have that Tork (M,N) = M ®g N for all R-modules N.

(2.) Every short exact sequence of R-modules 0 — N' — N — N" — 0 induces an exact sequence

-+ — Tor® | (M,N") — TorX (M,N') — Torf(M,N) — TorX (M,N") — Tor® | (M,N') — ---.
(3.) We have that TorlR (M,N) =0 for all integers i > 1 and all R-modules N if and only if M is flat.

Proof. (1.) Given any R-module N, we may consider a flat resolution L, of N that ends with the
terms L £—1> Ly €—0> N — 0. By applying the right-exact covariant functor M @ —, we obtain a chain
complex ending in M ®g Ly ﬁ> M ®r Ly ﬁ 0 with chain maps ¢} = idy @g¥;. Consequently, we
find that ker £; = M ®g Lo and img (] = img(idy ®rl1) = M @ (img ¢y ), where the second equality

holds because the pure tensors of M ®g (img /) generate img(idy; ®g¢;). Consider the short exact
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sequence of R-modules 0 — img /¢, N Lo — Lo/(img¢;) — 0. By Proposition [2.2|and , we ob-
tain a sequence of R-modules M Qg (img¥;) - M Qg Ly — M Qg (Lo/(img¥;)) — O that is exact
in the last two places. Considering that the map on the left is the identity on both components, we
conclude that M ®g (Lo/(img¢;)) = (M ®g Lo)/[M @g (img/;)] by the First Isomorphism Theo-
rem. By definition, we have that Tor§ (M, N) =ker/}/img ¢} = (M ®g Lo)/[M ®g (img¥; )], hence
our previous computation shows that TorX (M,N) =2 M ®g (Lo/(img#;)) = M @ N, as desired.
(3.) If M is flat, then M ®g — is exact by Proposition hence for any flat resolution L, of
any R-module N, the chain complex M ®g L, is exact. We conclude that TorX(M,N) = 0 for all
integers i > 1. Conversely, suppose that TorX(M,N) = 0 for all integers i > 1 and all R-modules
N. For any short exact sequence of R-modules 0 — N’ — N — N” — 0, there exists a long exact
sequence that begins 0 — M @gr N’ — M @g N — M @g N — 0. By Proposition 2.7} M is flat.

We omit the proof of property (2.), but we refer the reader to [Rot09, Corollary 6.30]. [

One can show that TorlR (M, —) is a covariant functor from the category of R-modules to itself
that preserves multiplication (cf. [Rot09, Theorem 6.17 and Proposition 6.18]), hence we may
deduce from Proposition m that the R-modules TorR (M, —) measure the flat “defect” of M. By
Proposition [2.2] the R-modules M @ N and N ®g M are isomorphic for any pair of R-modules M
and N, hence one can establish a similar theory for the covariant functors Tor®(—, N). Ultimately,
there is an isomorphism of functors Tork (M, —) and Tork(—,N) for all R-modules M and N, hence

there is no need to make any distinction between the two (cf. [Rot09, Theorem 6.32]).

One of the most important results in homological algebra is the [Tensor-Hom Adjunction| that

relates the functors Hom and the tensor product. Let R and S be commutative rings. We say that
an abelian group (B,+) is an (R, S)-bimodule if it is an R-module via the action -, an S-module
via the action %, and these actions are “compatible” in the sense that (r-b) s =r- (bxs) for all
elements r € R, s € S, and b € B. Observe that if A is an R-module and B is an (R, S)-bimodule,
then the tensor product A ®g B is a R-module via r(a ®g b) = (ra) @b = a®g (rb) and a right

S-module via (a ®g b)s = a ®g (bs). One can check that A ®g B is an (R, S)-bimodule.
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Theorem 2.15 (Tensor-Hom Adjunction). Let R and S be commutative rings. Let A be an R-
module. Let B be an (R,S)-bimodule. Let C be an S-module. There exists a Z-module isomorphism
o : Homg(A ®g B,C) — Homg(A,Homg(B,C)) defined by a(@)(a) : b+— @(a®gb) for all ele-

ments a € A and b € B and each S-module homomorphism ¢ : AQrB — C.

Proof. Before establishing the claim, we begin with a thorough examination of the objects therein.
Each element of Homg(A ®g B,C) is an S-module homomorphism ¢ : A ®g B — C. By definition,
the pure tensors of A ®g B generate it as an S-module, hence every element of Homg(A ®g B,C)
is uniquely determined by its image on the pure tensors of A ®r B. Likewise, the elements of
Homg(A,Homg(B,C)) are R-module homomorphisms that send an element a € A to an S-module
homomorphism y, : B — C. Consequently, for each S-module homomorphism ¢ : A ®@r B — C,
the designation of the S-module homomorphism Y, , : B — C onto which ¢ is mapped for each
element a € A induces a function & : Homg(A ®g B,C) — Homg(A,Homg(B,C)). Considering that
¢ and the tensor product are (right) S-linear, the map Wy 4 : B — C defined by Wy 4(b) = @(a®rb)
is an S-module homomorphism that satisfies Wy o = 0¢(¢)(a) as in the statement of the theorem.
We must prove first that & is Z-linear. Given any S-module homomorphisms ¢ : AQrB — C

and v: A®gr B — C and any element n € Z, we have that

Vng+ya(b) = (n@ +7)(a®rb) = n@(a®@rb) + Y(a®rb) = (nWep o+ Yy.a)(b)

for all elements a € A and b € B. By our previous identification, we conclude that o is Z-linear.

If ¢ :A®gB — C lies in ker &, then Yy , is the zero homomorphism for each element a € A.
Consequently, we find that ¢(a ®r b) = Yy +(b) = 0 for all elements a € A and b € B. Considering
that the pure tensors generate A @g B, we conclude that ¢ is the zero homomorphism.

Last, suppose that ¥ : A — Homg(B,C) is an R-module homomorphism. Let y, denote the S-
module homomorphism y(a) : B— C, as in the opening paragraph of the proof. Consider the map
0 : A X B— C defined by 6(a,b) = y,(b). By assumption that y and its images Y, are all biaddi-
tive, it follows that o (a+d’,b) = W, (D) = (Vo + Wy )(b) = Wu(b) + Yy (b) = 6(a,b) + 6 (d’,D)
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and o(a,b+b') = y,(b+b) = y,(b) + y,(b') = o(a,b) + c(a,b’) for all elements a,a’ € A
and b,b’ € B. We conclude that o is a biadditive R-module homomorphism, hence the

[Property of the Tensor Product| guarantees the existence of a biadditive Z-module homomorphism

Y:A®grB — C such that y(a ®r b) = o(a,b) = y,(b) for all elements a € A and b € B. Conse-

quently, we find that y is the image of y under o, hence o is surjective. [

3 Existence of Injective Modules

We are now able to return to our discussion of injective modules. We begin with the following.

Theorem 3.1 (Baer’s Criterion). Let R be a commutative unital ring. Let I be a nonzero ideal of
R. An R-module Q is injective if and only if for every R-module homomorphism @ : I — Q, there

exists an R-module homomorphism @ : R — Q such that ¢(i) = (i) for each element i € I.

Corollary 3.2. Let Z be the abelian group of integers. Let QQ be the abelian group of rational

numbers. The quotient group Q/Z is injective as a Z-module.

Proof. By Baer’s Criterion|, it suffices to show that any Z-module homomorphism ¢ : nZ — Q/Z

lifts to a Z-module homomorphism ¢ : Z — Q/Z such that ¢(na) = ¢(na) for any a € Z. Consider
the map ¢ : Z — Q/Z defined by ¢(a) = C—l(p(n). By hypothesis that ¢ is a Z-module homomor-
n

phism, it follows that @ is a Z-module homomorphism such that ¢(na) = @(p(n) =o@(na). O
n

We prove next that every R-module can be identified with an R-submodule of an injective R-

module; this analogizes the fact that any R-module is the homomorphic image of a free R-module.

Lemma 3.3. Every Z-module embeds in an injective Z-module. Explicitly, for every Z-module M,

there exists an injective Z-module Q and an injective Z-module homomorphism ¢ : M — Q.

Proof. Given any Z-module M, consider its character group M* = Homy(M,Q/Z). We may sub-
sequently define the character group M** = Homy(M*,Q/Z) of M* that consists of all Z-module

homomorphisms that send a Z-module homomorphism ¢ : M — Q/Z to an element of Q/Z.
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Consequently, we may define a map ev : M — M** satisfying ev(m)(¢) = ¢@(m). Observe that
ev(am+m')(@) = @(am+m') = ¢(am) +@(m') = ap(m) + @(m') = aev(m) (@) +ev(m')(¢) for
any integer a, any elements m,m’ € M, and any Z-module homomorphism ¢ : M — Q/Z, hence
ev is a Z-module homomorphism. One can verify that ev(m)(a@ + v) = aev(m)(@) +ev(m)(y)
for any integer a and Z-module homomorphisms ¢ : M — Q/Z and y : M — Q/Z, hence ev is
well-defined. Last, we claim that ev is injective. By the contrapositive, it suffices to show that
every nonzero element m € M induces a Z-linear homomorphism ¢ : M — Q/Z for which ¢ (m)
is nonzero. By hypothesis that m € M is nonzero, the Z-module C = Z(m) is nonzero. If nm =0
for some integer n > 2, then the assignment m —> % + Q/Z induces a well-defined Z-linear homo-
morphism @ : C — Q/Z defined by ¢(am) = g +Q/Z. Otherwise, the assignment m — % +Q/Z
induces a well-defined Z-linear homomorphism ¢ : C — Q/Z defined by ¢(am) = g +Q/Z. Ei-
ther way, by the injectivity of Q/Z as a Z-module, the inclusion homomorphism i : C — M can be
extended to a Z-linear map @ : M — Q/Z such that ¢ = @ oi and ¢(m) = ¢(m) is nonzero.
Considering that M* is a Z-module, there exists a free Z-module F and a surjective Z-module
homomorphism 7 : FF — M, i.e., there exists an exact sequence of Z-modules F 5 M* = 0.
By Proposition Homyz(—,Q/Z) induces an exact sequence of Z-modules 0 — M** T, F*
Observe that if F = @gycp+Z, then F* = Homy, (GB%M* Z,Q/Z) = pem+(Q/Z). Ultimately,
n*oev: M — F* is an injective Z-module homomorphism, so our proof is complete in view of the

fact that F'* is an injective Z-module by Corollary and [Rot09, Proposition 3.28(1)]. [

Lemma 3.4. Let R be a commutative ring. If P is a projective R-module and Q is an injective

Z-module, then P2 = Homz(P,Q) is an injective R-module.

Proof. We may define an R-module action on P2 via (r- @)(x) = ¢@(rx) because the identity

[(r+5)- @](x) = @((r+5)x) = @(rx+5x) = @(rx) + @(sx) = (r- @ +5- 9)(x)

holds for all elements r,s € R and x € P, as ¢ is a group homomorphism. By Proposition [.6] it

suffices to show that Homg(—, P9) is right-exact on the category of R-modules. Given any short
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exact sequence of R-modules 0 -+ A — B — C — 0, we obtain an exact sequence of R-modules

0 2>ARRP —+BRXRrP—>CRrP—0

by Propositions[2.2[1.) and [2.10] By applying Proposition [[.6] we find that

0— HomZ(C®RP, Q) — HomZ(B®RP, Q) — HomZ(A ®QRr P, Q) —0

is a short exact sequence of Z-modules. Last, the [Tensor-Hom Adjunction| yields a short exact

sequence 0 — Homg(C,P2) — Homg (B, P2) — Homg(A, P?) — 0 of R-modules, as desired. [
Proposition 3.5. Every R-module embeds into an injective R-module.

Proof. Let M be an R-module. By definition, (M, +) is an abelian group, hence it is a Z-module.
By Lemma [3.3] there exists an injective Z-module Q and an injective Z-module homomorphism
¢ : M — Q. By Proposition this induces an injective Z-module homomorphism Homz(R, @) :
Homyz(R,M) — Homg(R,Q). Crucially, Homgz(R,Q) is an injective R-module by Lemma
hence it suffices to find an injective R-module homomorphism M — Homz(R, Q).

Consider the map u : M — Homg(R,M) defined by u(m)(r) = rm for all elements r € R.
Observe that u(m~+m')(r) =r(m+m') = rm+rm’ = (u(m)+ u(m'))(r) for all elements r € R and
any elements m,m’ € M. We conclude that  is a Z-module homomorphism. Even more, if u(m)
is the zero homomorphism, then m = 1gm = p(m)(1g) = 0, hence u is injective. Consequently,
the map Homg (R, ¢) o u : M — Homg(R, Q) is an injective Z-module homomorphism.

Given any element r € R, observe that (Homy(R, @) o it)(rm) = @ o u(rm) is the Z-module
homomorphism that sends an element s € R to the element @(rsm) of Q. Likewise, the composite
map (Homgz(R, @) o u)(m) is the Z-module homomorphism that sends an element s € R to the
element @(sm) of Q. By the R-module structure of Homz(R, Q) defined in Lemma it follows
that r[(Homz(R, @) o u)(m)] and (Homz (R, @) o u)(rm) are identical on R, hence they are equal.

We conclude that Homyz (R, ¢) o u is an R-module homomorphism, and our proof is complete. [
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Ultimately, Proposition 3.5|implies that every R-module N admits an injective resolution, i.e.,
0 1 n n+1 ,
a (right) resolution Q® : 0 — N — Q° 4, 0! 4.4 o1 2 ... in which Q' is injective for

each integer i > 0. Given an R-module M, consider the cochain complex

0 1 n n+1
Homg (M, Q®) : 0 — Homg(M, Q") L5 Homg(M, Q") L5 - L5 Homg(M, Q") L— .-
with cochain maps defined by ¢'. = Homg(M,q') for each integer i > 0. We define the ith coho-
mology module Exth(M,N) = kerq’ /imgq’~! for each integer i > 0. Like before, Extiy(M,N) is

independent of the choice of an injective resolution of N (cf. [Rot09, Proposition 6.40]).
Proposition 3.6. Let M be an R-module. The following properties hold.
(1.) We have that Exty(M,N) = Homg(M,N) for all R-modules N.

(2.) Every short exact sequence of R-modules 0 — N’ — N — N" — 0 induces an exact sequence

- — Bxtl (M, N") — Exth(M,N") — Extly(M,N) — Exth(M,N") — Exti™ (M,N') — ---.
(3.) We have that EX'[}.Q (M,N) =0 forall i > 1 and all R-modules N if and only if M is projective.

Proof. We omit the proof, as it is analogous to the proof of Proposition 0

One can show that Exth, (M, —) is a covariant functor from the category of R-modules to itself
that preserves multiplication (cf. [Rot09, Theorem 6.37 and Proposition 6.38]), hence we may
deduce from Proposition that the functors Ext}} (M, —) measure the projective “defect” of M.

Later, in our discussion of canonical modules, we will need the following proposition.

Proposition 3.7. [Rot09, Proposition 7.24] Let R be a commutative ring with R-modules A and C.

IfExth(C,A) = 0, then every short exact sequence 0 — A — B — C — 0 splits.

Proof. Consider a short exact sequence 0 — A 4B £> C — 0. By applying Homg(C, —), we obtain

a long exact sequence of Ext in which the terms Homg(C, B) EA Homg(C,C) @, Exth(C,A) appear.

By hypothesis that Ext}(C,A) =0, we find that Homg (C,C) = ker o* = img ¥, hence ¥ is surjective.

23



Particularly, there exists an R-module homomorphism B’ : C — B such that idc = § o f’. By the

Splitting Lemma, we conclude that the short exact sequence 0 — A 4B E> C — 0 splits. ]

If an R-module M admits an injective resolution with finitely many nonzero injective modules,

then its injective dimension is the minimum length of all of such resolutions, i.e.,
injdimg(M) = inf{n | Q*: 0 =M — Q° — Q' — ... — Q" — 0 is an injective resolution of M}.

Otherwise, we say that M does not have finite injective dimension. Our next proposition describes

the injective dimension of a module in terms of Ext. Before this, we need the following lemma.

Lemma 3.8. Let R be a commutative ring. Let A be an R-module. Let M be an R-module with an
1 0 1 .
injective resolution Q* : 0 — M 4, Q° SN 0! Ly ... Let I; =1mgq' for each integer i > —1. For

all integers n > i+ 2, there exist R-modules isomorphisms Bxtly '(A,I;) = Ext;’e_i_] (A, Li11).

Proof. We will illustrate that Ext}s™! (A, M) = Ext}(A, Iy); the remaining isomorphisms follow sim-
ilarly. By hypothesis that Q° is an injective resolution of M, we may obtain an injective resolu-
tion of Iy = img qo by taking Qg : 0 — Iy LN 0! i> 0? i ---; indeed, it suffices to note that
kerg! =imgq® = I° = imgi by construction, and the rest of the resolution is exact by assumption.

Consequently, if we relabel the injective modules Q' as X'~! and the maps ¢’ as y'~!, we find that

kergy  ker 2!

imgg/t!  imgy?

Exts™ (A, M) = = Exth(A,I).

Because Ext is independent of the choice of injective resolution, the isomorphism holds. U
Proposition 3.9. Let R be a commutative ring. The following are equivalent.

(i.) The R-module M has injdimgz(M) < n.

(ii.) The R-module M satisfies Exty™ (A, M) = 0 for all R-modules A.

Proof. If M is an R-module of injective dimension no larger than n, then there exists an injective

resolution Q* : 0 - M — Q° - Q! - ... — 0" — 0. By Lemma for every R-module A,
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we have that Ext}" (A, M) = Exth(A,Q"). But Q" is injective, hence the latter Ext vanishes by
Proposition Conversely, suppose that Ext}y™' (4, M) = 0 for all R-modules A. Consider an
injective resolution Q° of M. By Lemma , we have that Exts™! (A, M) = Extk(A,1,), hence by
assumption, we conclude that 7, is an injective R-module. Consequently, we obtain a finite injective

resolution of M of length n by truncating the injective resolution Q° at I,,. [

Using the tools introduced in the next section, we will determine a pleasant formula the injec-

tive dimension of a module of finite injective dimension. Until then, we note the following.

Proposition 3.10. [BH93, Proposition 3.1.14] Let (R,m k) be a Noetherian local ring. Let M be

a finitely generated R-module. We have that

injdimp (M) = sup{i > 0 | Exty(k,M) #0}.
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4 Appendix

4.1 Rings, Ideals, and Modules

Unless otherwise stated, we will assume throughout this appendix that R is a commutative unital
ring with additive identity Og and multiplicative identity 1. Recall that an ideal / of R is a subgroup
of (R,+) that is closed under multiplication by elements of R, i.e., we have that ri € I for every
element r € R and i € I. We say that a proper ideal P of R is prime if and only if the quotient ring
R/P={r+P|re€ R} is adomain. We say that a proper ideal M of R is maximal if and only if

R/M is a field. By convention and for convenience, we make the following definitions, as well.

Definition 4.1. We denote by Spec(R) the collection of prime ideals of R, i.e.,
Spec(R) = {P C R| P is a prime ideal of R}.

Occasionally, we will write MaxSpec(R) = {M C R | M is a maximal ideal of R }. We refer to
Spec(R) as the spectrum of R; likewise, MaxSpec(R) is the maximal spectrum of R. We define

also the Jacobson radical Jac(R) of R as the intersection of all maximal ideals of R.

Example 4.2. Let Z denote the ring of integers. We have that Spec(Z) = {pZ | p is prime} U {0}
because Z is a Euclidean domain and MaxSpec(Z) = Spec(Z) \ {0}.

By the Fundamental Theorem of Arithmetic, every positive integer can be written as a product
of positive powers of distinct primes. Consequently, given any integer n, there exist distinct primes
P1,- .., Pk and positive integers ey, ..., e such that n = £pi' - p,ik. Every ideal of Z is principal,
and we have that aZ C bZ if and only if b | a, hence the ideal nZ induces a chain of ideals beginning
with itself and ending with p;Z for some prime p; appearing in the prime factorization of .

Generally, we use the following definition to describe this property of a ring.
Definition 4.3. We say that R is Noetherian if any of the following equivalent conditions hold.

(i.) Every ascending chain of ideals of R stabilizes. Explicitly, for every sequence of inclusions

of ideals I C I, C ---, there exists an integer n > 0 such that [; = I, for all integers k > n.
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(i1.) Every nonempty collection of ideals has a maximal element with respect to inclusion.

(ii1.) Every ideal I of R is finitely generated. Explicitly, there exist elements x1, ..., x, € I such that

for every element x € I, we have that x = ryx| + - - - 4+ r,,x,, for some elements ry,...,r, € R.

Example 4.4. Let k be a field. Observe that the only ideals of k are {0} and k: indeed, the ideals
of k (or any commutative unital ring) are in one-to-one correspondence with the kernels of the
unital ring homomorphisms k — S as S ranges over all commutative unital rings. Every nonzero
element of k is a unit, so any unital ring homomorphism ¢ : k — S must be injective or identically
zero, i.e., ker @ = {0} or ker ¢ = k. Both of these are finitely generated ideals, as k is generated

as an ideal by 1 (as with any ring). Consequently, any field k is Noetherian by Definition 4.3

One can show that if R is a Noetherian ring, then any polynomial ring over R, any quotient
of R by an ideal, and any finitely generated R-algebra is itself a Noetherian ring. By the previous
example, any polynomial ring or finitely generated algebra over a field is a Noetherian ring. Even

more, Example 4.4 shows that the only maximal ideal of a field is the zero ideal.

Definition 4.5. We say that R is local if R admits a unique maximal ideal m. For emphasis, we

write (R, m, k) to denote the local ring R with unique maximal ideal m and residue field k = R /m.
Proposition 4.6. Let R be a commutative unital ring. The following conditions are equivalent.

(1.) Ris local.

(ii.) For every element r € R, either r or 1g +r is a unit.
FParticularly, the unique maximal ideal of a local ring R consists of all non-unit elements of R.

Example 4.7. Given a field k and indeterminate x, consider the quotient ring S = k[x]/(x?). We
denote by x the class of x modulo (xz). By the Correspondence Theorem, the ideals of S are in
bijection with the ideals of k[x] that contain (x?) via the map that sends an ideal I of k[x] to the
ideal 1/(x?) of S. Considering that k[x] is a principal ideal domain, the ideals of S are (Og), (%),
and S, corresponding to the ideals (x?), (x), and k[x], respectively. Of these, (%) is maximal by the

Third Isomorphism Theorem. Consequently, (S, m) is a local ring with maximal ideal m = (%).
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Using a process analogous to the construction of the rational numbers Q from the integers Z,
one can always obtain a local ring from a given ring. Recall that a set S C R is multiplicatively
closed if S contains 1z and for any elements s,7 € S, we have that sz € S. Given any multiplicatively
closed set S C R, one can construct an equivalence relation on R x S by declaring that (r,s) ~ (+/,s")
if and only if there exists an element ¢ € S such that 7(rs’ — r’s) = Og. One need only check that
if (r,s) ~ (¥,s') and (¥',s") ~ (r",s"), then (r,s) ~ (r",s”). But in this case, there exist elements
t,t' € S such that #(rs’ — r's) = Og and ¢/ (r's” — r'’s") = Og, hence the product 5’7 belongs to S and
satisfies s'1t’ (rs” — r'"’s) = Og. Like with rational numbers, we denote by r/s the equivalence class

of (r,s) modulo ~. Consider the set of equivalence classes of (R x S)/ ~, denoted by

/

r roor _

SR = {— :reR,s€S, and - = — <= there exists ¢ € S such that #(rs' —r's) :OR}.
s s s

We refer to S™1R as the localization of R with respect to S. Observe that by definition, if Og € S,

then S~'R = {0g}. Consequently, we will always assume that Og ¢ S.

Proposition 4.8. Let R be a commutative unital ring with a multiplicatively closed subset S.

oS +7r's r oo
7 Cll’ld — - —/ = —/

. . . . . r
(1.) S~'R is a commutative unital ring with respect to - +
s

s/ SS s S )

(2.) There is a canonical ring homomorphism A : R — S™'R defined by A(r) = IL
R

(3.) For any ideal I of R, we have that IST'R = A(I) = {i ci€lands € S}.
s

(4.) For any ideal I of S~'R, we have that .~ ()ST'R=A(A"'(I)) = I

(5.) The canonical ring homomorphism A : R — S™'R induces a one-to-one correspondence be-

tween Spec(S™'R) and the prime ideals of R such that PNS = 0.

{P € Spec(R) | PNS =0} + Spec(S™'R), P— A(P) =PS 'R

(6.) (Existence of Local Maximal Ideals) If I is an ideal of R such that [ NS = 0, then there exists
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a prime ideal P of R such that PN\S = 0 and S™'P is a maximal ideal of S~'R. Particularly,

the prime ideal P is the largest (with respect to inclusion) ideal of R that is disjoint from S.

(7.) If P is a prime ideal of R, then W = R\ P is a multiplicatively closed set. Further, the local-

ization Rp = W ™R is a local ring with unique maximal ideal PRp.

Proof. We omit the proofs of properties (1.), (2.), (3.), and (4.), as they are routine to check.

(5.) We establish first that the map is well-defined, i.e., we show that if P is a prime ideal
of R such that PN S = 0, then the ideal A(P) = PS™!R of S~!R is prime. Given any elements
a/s, b/t € STIR such that (a/s)(b/t) € A(P), we claim that either a/s € A(P) or b/t € A(P). By
definition, we have that (a/s)(b/t) = ab/st belongs to A (P) if and only if there exist some elements
¢ € P and u,v € S such that v(abu — stc) = Og or vabu = vstc. By hypothesis that ¢ belongs to P,
we conclude that vabu belongs to P. Considering that P is a prime ideal of R, one of the elements
a,b,u, or v must belong to P. By construction, neither # nor v belongs to P, so either a or b belong
to P. Consequently, either a/s or b/t belong to A (P), and we conclude that A (P) is prime.

Our previous paragraph establishes that the map is well-defined. We proceed to show that it
has a well-defined inverse. Consider the map P+ A~!(P). If PS~!R is a prime ideal of S~ 'R, then
its contraction A ~!(P) is a prime ideal of R. Further, every element of S is mapped onto a unit by
A, hence if A ~1(P) NS were nonempty, then P = A (1~ (P)) would be the entire ring S~'R — a
contradiction. We conclude that the map P+ A~!(P) is well-defined. By property (2.) above,
we have that A(A~1(P)) = P for all prime ideals P of S~'R, hence the map P — A~ !(P) has a
left-inverse. On the other hand, we claim that A ~!(A(P)) = P so that the map P+ A~!(P) has a
right-inverse. Clearly, it is always the case that P C A~ (A (P)). Conversely, let x be an element of
A~1(A(P)). By definition, we have that A (x) belongs to A (P), hence there exist elements s,z € S
and p € P such that ¢(xs — p) = Og. But this implies that 7xs belongs to the prime ideal P so that x
belongs to P by assumption that s, € S and PNS = 0. We conclude that A~ (A (P)) = P.

(6.) Observe that the collection = {I C R | I is an ideal of R and /NS = 0} is partially or-
dered by inclusion. Further, it is nonempty because it contains the zero ideal of R. Given any chain

I CL CI3 C--- ofideals in &, the union U1, is an ideal of R that is disjoint from S. Conse-
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quently, every chain in & has an upper bound in &, hence ¥ has a maximal element P by Zorn’s
Lemma. We claim that P is a prime ideal of R. Consider some elements a,b € R such that ab € P.
On the contrary, if neither a € P nor b € P, then we would have that P C aR+ P and P C bR+ P.
By the maximality of P, there would exist elements s € (aR+P)NS and 7 € (bR+ P)NS. Observe
that (aR+ P)(bR+ P) C P so that st € (aR+ P)(bR + P) belongs to P — a contradiction.

(7.) By definition, a prime ideal P of R is a proper ideal such that ab € P implies that a € P or
b € P. Equivalently, if neither a € P nor b € P, then ab € R\ P, i.e., W = R\ P is multiplicatively
closed. By properties (1.) and (5.), Spec(Rp) is in bijection with {Q € Spec(R) | QNW =0} =

{Q € Spec(R) | Q C P}. We conclude that PRp is the unique maximal ideal of the local ring Rp. [

By definition, the zero ideal of a domain D is prime. Consequently, we may construct the local
ring Frac(D) = W~!R for the multiplicatively closed set W = D\ {Op}. Observe that Frac(D) is
the field of fractions of D: every nonzero element d /w of Frac(D) has multiplicative inverse w/d.
Particularly, we have that Frac(Z) = Q. Generally, the set S of non-zero divisors of a commutative

—1

unital ring is multiplicatively closed; the ring Q(R) = S~ 'R is the total ring of fractions of R.

Other than the ideals of a commutative unital ring, the following definition introduces algebraic

structures associated to R by which one may understand the properties of R.

Definition 4.9. We say that an abelian group (M, +) is an R-module if there isamap - : Rx M — M

that sends (r,m) — r-m such that for all elements r,s € R and m,n € M, we have that
) r-(m+n)=r-m+r-n,
(i) (r+s)-m=r-m+s-m,
(iii.) r-(s-m) = (rs)-m, and
@(iv.) 1g-m=m.

Clearly, R is an R-module via its own multiplication. We will reserve the notation O for the zero
element of M. Often, it will be convenient to write r - m as rm with the understanding that r is an

element of R that is acting on the element m of the R-module M via the specified action.

30



Like with any algebraic structure, the substructures of a module are of central importance to
its study. If M is an R-module, then N C M is an R-submodule if N is closed under addition and
R-scalar multiplication and 0 € N. By definition, the R-submodules of R are precisely its ideals.

If M and N are any R-modules, then an R-module homomorphism ¢ : M — N is a function
such that @(m+m') = @(m) + @(m') and @(rm) = re(m) for all elements m,m’ € M and r € R.
Equivalently, one could say that an R-module homomorphism is an R-linear transformation.

Crucially, if M is an R-module and / is an ideal of M such that /M = 0, then M can be viewed
as an R/I-module via the action (r+1)-m = rm. Explicitly, if r+1 = s+ 1, then r — s belongs to
I so that rm — sm = (r — s)m = 0. But this implies that (r+1) -m = rm = sm = (s+1) - m, and the
action is well-defined. Particularly, if m is a maximal ideal of R, then R/m is a field. Further, if

mM = 0, then M is an R/m-vector space, and it admits a basis. We will return to this idea soon.

We say that an R-module M is finitely generated if there exist elements x,...,x, € M such
that for every element x € M, there exist elements ry,...,r, € R such that x = rjx; + - - + ryx,.
Put another way, the elements xi,...,x, € M generate M as an R-module if M = R(x,...,x,). We

state a fundamental result relating the finitely generated R-modules and prime ideals of R.

Lemma 4.10 (Prime Avoidance Lemma). [[BH93, Lemma 1.2.2] Let R be a commutative unital
ring with prime ideals Py, ..., P,. Let M be an R-module with x1,...,x, € M. Let N = R(x1,...,X,).
If Np. & PMp, for any integer 1 <i < n, then there exists an element x € N such that x ¢ P;Mp, for
any integer 1 < i < n. Particularly, if I is a finitely generated ideal of R such that I  P; for any

integer 1 <i < n, then there exists an element r € I such that r ¢ P, for any integer 1 <i < n.

One of the most valuable results on finitely generated modules is the Cayley-Hamilton Theo-

rem; the reader might be familiar with its use in linear algebra, but we state it in generality.

Theorem 4.11 (Cayley-Hamilton Theorem). Let R be a commutative unital ring. Let M be a
finitely generated R-module. For any ideal I and any R-module homomorphism ¢ : M — M such
that (M) C IM, there exists a monic polynomial " + ijt" ' + - 4 i, 1t + i, with iy,... i, €I

such that @™ + ilq)”*l + -+ i, 1Q +iyidyy is the zero homomorphism on M.
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Proof. Let xy,...,x, be a system of R-module generators of M. By hypothesis that ¢(M) C IM,
we may view M as an R[t]-module via the action 7 - x = @(x). Considering that M = R(xy,...,x,)
and @(M) C IM by assumption, for each integer 1 < j < n, there exist elements i jdseesijn €1
suchthat-x; = @(x;) = Y7 _ijxxk or Y7, (8j it —ijx)xx = Og, where 0 s is the Kronecker delta.
Consider the matrix A whose jth row and kth column is 5j,ks — ij k- Observe that the previous
identity shows that Ax = 0 for the column vector x = (xj,...,x,)". Using the fact that adj(A)A is
det(A) times the n x n identity matrix, we conclude that det(A)x = 0. Consequently, det(A) is a

monic polynomial in ¢ with coefficients in / that acts as the zero homomorphism on M. [

Every finitely generated module over a local ring (R, m) admits a unique number of minimal

generators by Nakayama’s Lemma. Considering its importance and ubiquity, we record it below.

Lemma 4.12 (Nakayama’s Lemma). Let (R,m,k) be a local ring with unique maximal ideal m
and residue field k. Let M be a finitely generated R-module. If the images of x1, . . .,x, modulo mM

form a basis of the k-vector space M /mM, then M = R(x, ... ,xp).

One common variation of[Nakayama’s Lemmalis presented in the following corollary. We omit

the proof of the necessity of Nakayama’s Lemmal but we do establish its sufficiency.

Corollary 4.13. Let (R,m,k) be a local ring. Let M be a finitely generated R-module. If I is a

proper ideal of R and N is an R-submodule of M such that M = IM + N, then M = N.

Proof. Let x1,...,x, denote a system of generators of M such that x; +mM, ..., x, +mM forms a
basis for the k-vector space M /mM. By hypothesis that M = IM + N, for each integer 1 < i < n,
there exist elements 7;1,...,7,, € I and y; € N such that x; = y; + 2?21 ri jxj. Consequently, we

have that x; + mM = y; +mM so that y; +mM, ...y, +mM forms a basis of M /mM. We conclude

by [Nakayama’s Lemmalthat M = R(yy,...,y,) so that M = N, as desired. ]

We denote by (M) = dimy(M/mM) the unique number of minimal generators of M, as guar-

anteed by [Nakayama’s Lemma] Our next definition generalizes Definition 4.3]

Definition 4.14. We say that M is Noetherian if any of the following equivalent conditions hold.
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(i.) Every ascending chain of R-submodules of M stabilizes.
(ii.) Every nonempty collection of R-submodules of M has a maximal element under inclusion.
(iii.) Every R-submodule of M is finitely generated.
If R is Noetherian, then the following condition is equivalent to the above conditions.
(iv.) The R-module M is finitely generated.
We describe two paramount results on Noetherian modules over Noetherian rings.

Lemma 4.15 (Artin-Rees Lemma). Let R be Noetherian. For any ideal I and finitely generated

R-modules N C M, there exists an integer k > 1 such that "M NN = I”_k(lkMﬂN) foralln > k.

Theorem 4.16 (Krull’s Intersection Theorem). Let R be a Noetherian ring. For any proper ideal [
of R and any finitely generated R-module M, we have that (> I"M = I(ﬂnZO I”M). Even more,

there exists an element x € I such that (1g —x)(,>0I"M = 0. If R is local, then (>0 I"M = 0.

Proof. Observe that N = (1,~(I"M is a finitely generated R-submodule of M and N = I"M NN for

all integers n > 0. By the |Artin-Rees Lemmal there exists an integer k > 1 such that

N=I"MNN=I"*I*MnN)=1""*N

for all integers n > k. We conclude that N = IN, i.e., we have that idy(N) C IN. By the |Cayley-

|Hami1ton Theorem[, there exists a monic polynomial " + i W gt i, with iy, i €T

such that (1g+i; + -+ +i,—1 +1,)idy is the zero endomorphism on N. Consequently, we find that
(1g+i1+ - +in_1 +in)N = 0 50 that (1g —x)N = 0 with x = — (i) + -+ +in_1 +in) € L.
Last, if R is local, then we conclude that (,,>(I"M = N = 0 by Corollary O

We refer to a chain of R-modules 0 C M| C --- C M,_; C M as a composition series of M if

there does not exist an R-submodule N of M such that M; C N C M; | for any integer 0 <i<n—1.
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Put another way, a composition series of M is a maximal ascending chain of R-submodules of M

beginning with 0 and ending with M. One of the most important invariants of M is its length

lg(M) = inf{n > 0 | M admits a composition series 0 C M| C --- C M, C M}.

If R is a field and M is an R-module, then M is an R-vector space, and its length coincides with its
R-vector space dimension. Consequently, length is a generalization of vector space dimension to
modules over commutative unital rings other than fields. Considering that finite-dimensional vector

spaces exhibit pleasant properties, we are motivated to investigate length of general modules.
Definition 4.17. We say that M is Artinian if any of the following equivalent conditions hold.

(1.) Every descending chain of R-submodules of M stabilizes.

(i1.) Every nonempty collection of R-submodules of M has a minimal element under inclusion.
Proposition 4.18. Let R be a commutative unital ring. The following are equivalent.

(i.) An R-module M is Noetherian and Artinian.

(ii.) An R-module M has finite length over R.

Proof. Clearly, the claim holds if M = 0. We will assume henceforth that M is a nonzero R-module.
(1.) If M is both Noetherian and Artinian, then we may construct a composition series of M as
follows. By assumption that M is nonzero, there exists an R-submodule of M that strictly contains
0. By Definition we may find a nonzero R-submodule M; of M that is minimal with respect
to inclusion among all R-submodules of M that strictly contain 0. If M; = M, then we are done;
otherwise, we may find a nonzero R-submodule M, of M that is minimal with respect to inclusion
among all R-submodules of M that strictly contain M;. Continuing in this manner yields a strictly
ascending chain of R-submodules 0 C M| C M, C ---. By hypothesis that M is Noetherian, this
must be finite, hence we obtain a chain of R-submodules 0 C My C M, C --- T M, C M of M; it

is by construction a composition series of M, hence we conclude that {g(M) < n.
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(i1.) Conversely, suppose that M has finite length n over R. We claim that every descending
chain of R-submodules of M stabilizes. On the contrary, suppose that there exists an infinite de-
scending chain My D M, D --- of R-submodules of M. Observe that the first n + 2 terms of this
chain yield a chain M, ;o C M, 11 C --- C My C M. By hypothesis, M,,.» is nonzero, hence we
may append M and the zero module to obtain a chain 0 C M, p C M, 1 C - C M, C M CM
of length at least n+ 1. Because we can refine this chain to a composition series of M of length
larger than ¢g(M) = n, we have reached a contradiction. Likewise, there cannot exist an infinite

ascending chain of R-submodules of M. We conclude that M is Noetherian and Artinian. [
Corollary 4.19. If M has finite length as an R-module, then M is finitely generated over R.

Length is an especially important invariant over local rings. Our next proposition gives a useful

equivalent condition for a module over a local ring to have finite length.
Proposition 4.20. Let (R, m,k) be a local ring. The following are equivalent.
(i.) A R-module M is Noetherian and admits an integer n > 0 such that m"M = 0.
(ii.) An R-module M has finite length over R.

Proof. (1.) By definition of length, it suffices to exhibit a finite composition series of M. By

assumption that m"M = 0 for some integer n > 0, there exists a chain of R-submodules

(We may assume without loss of generality that m"~!'M is nonzero.) Observe that for each integer
0<i<n-—1, wehavethat M; = m'M / mtMisa quotient of the Noetherian R-module m'M , hence
it is finitely generated. Each module M; satisfies mM; = 0, hence we may view each M; as a k-
vector space. By our exposition preceding Definition the length of each finite-dimensional k-
vector space M; is finite, hence each M; admits a finite composition series. By the Correspondence

Theorem, a finite composition series of M; induces a strict chain of R-submodules of M beginning
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with m**1M and ending with m’M such that each successive containment is minimal. Combining
each chain successively from i =n — 1 to i = 0 yields a composition series for M.

(ii.) By Propositiond.18] if M has finite length over R, then M is a Noetherian R-module. On the
contrary, assume that m"M is nonzero for each integer n > 0. By definition, for each integer n > 0,
there exist elements rq,...,r, € mand m € M such that r; - - - r,m is nonzero. Consider the sequence
of R-modules 0 CR(ry---rym) C--- CR(rym) C Rm C M. We claim that each containment is strict;
otherwise, there would exist an integer 0 < k < n— 1 and an element s € R such that ry---rpm =
sry -+ reo1m. By rearranging, we would obtain (1g — srgiq)ry -+ - rgm = 0. By Proposition we
would find that 1 — sr; 1 1s a unit so that ry - - - rpm = 0 — a contradiction. Consequently, for each
integer n > 0, we have constructed a composition series of M of length n+ 1. But this is impossible

by assumption that M has finite length over R. 0

Corollary 4.21. Let (R,m,k) be a local ring. If R is Artinian as an R-module, then R has finite

length as an R-module. Particularly, every Artinian local ring is Noetherian.

Proof. By hypothesis that R is Artinian, the descending chain of ideals m O m? D --- stabilizes,
hence we must have that m” = 0 for some integer n > 0. By the proof of Proposition there
exist k-vector spaces V; = m’/m‘*! for each integer 0 < i < n— 1. Every descending chain of k-
vector subspaces of V; corresponds to a descending chain of ideals of R. By hypothesis that R is
Artinian, the k-vector spaces V; must be finitely generated so that R admits a composition series of

finite length as in the proof of Proposition[4.20] Last, R is Noetherian by Proposition 4.18§] O

By the proof of Proposition 4.20} we obtain the following important and useful fact.

Proposition 4.22. Let R be a commutative unital ring. Let M be an R-module such that IM = (0

for some ideal I of R. We have that (r(M) is finite if and only if Lg;;(M) is finite.

Proof. If IM = 0, then M is an R/I-module via the action (r+1) - M = rm. Consequently, a com-

position series holds for M as an R-module if and only if it holds for M as an R/I-module. [

We define the colength of an R-submodule N of an R-module M to be the length of the quotient

module M /N, i.e., the colength of N in M is fg(M/N). If I is an ideal of R with finite colength,
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then R/I is Artinian and Noetherian by Proposition Conversely, if R is Noetherian and R/I is
Artinian, then R/I is Noetherian and Artinian, hence 7 has finite colength.

We say that an ideal / of R is P-primary for a prime ideal P of R if P = /I. Observe that
if P" C I C P for some integer n > 0, then P = +/I so that I is P-primary. We establish next a

necessary and sufficient condition for ideals of finite colength in a Noetherian local ring.

Proposition 4.23. Let (R,m) be a local ring. Let I be an ideal of R. If I has finite colength, then I

is m-primary. Conversely, if R is Noetherian and I is m-primary, then I has finite colength.

Proof. By definition, if I has finite colength, then R /I has finite length as an R-module. By Proposi-
tion|4.20 we have that m"(R/I) = 0 for some integer n > 0 so that m" C I C m and / is m-primary.
Conversely, if I is m-primary, then m = /1. By hypothesis that R is Noetherian, this is equivalent
to the condition that m” C I C m for some integer n > 0, from which it follows that m"(R/I) = 0.
Even more, we have that dim(R/I) = 0 so that R/I is Artinian, from which it follows that R/I has

finite length as an R-module, i.e., I has finite colength. O]

4.2 Localization as a Functor

Let S be a multiplicatively closed subset of a commutative ring R. Our aim in this section is to
illustrate that localization of an R-module with respect to S is an exact functor. Localization of a
commutative ring at a prime ideal yields a commutative local ring, hence this fact reduces many

questions to the local case. Given an R-module M, we may construct its localization at S in the

same manner as in the section on [Rings, Ideals, and Modules| Consider the equivalence relation

on M x § induced by declaring that (m,s) ~ (m',s") if and only if there exists an element 7 € S such

that z(s'm — sm’) = 0; then, the localization of M with respect to S is

/

m m m .

S™IM = {— :meM,seS, and — = — <= there exists r € S such that 7(s'm — sm’) = O}.
s s s

Proposition 4.24. Let S be a multiplicatively closed subset of a commutative ring R. Let M be an

R-module. The localization of M with respect to S is an S~ R-module via the action - - % =m

r
u uv '’

37



Proof. We illustrate first that this action is well-defined. By definition, if . = 7 in S~IR, then

there exists an element ¢ € S such that rtv = stu. Given any element 3 of S~'M, we have that

— romo_rm _ sm_ s m i i i
rtvwm = stuwm so that |- = [ = T = - % We must now verify that the action satisfies

the distributive laws; the other two properties hold by definition. Observe that for any elements

ri,r2 €R, up,up,v €S, and m € M, we have that

<r1+r2) M Flup+rup mo riuam- rougm r1u2m+r2u1m rpr m r, m

up up Y Uiy v UiV Uiy  UiUV U V. Uy v

We note that a similar analysis shows that multiplication distributes over addition in S~'M. [

Consequently, localization with respect to S converts an R-module into an S~!R-module. Given
any R-module homomorphism ¢ : M — N, consider the map S~'¢ : S~'M — S!N defined by
S_lq)(%) = @. Observe that for any elements r € R, u,v,w € S, and m,n € M, we have that
r @(m)  @(n)

= — + ,
uvw uvw u 1% w

_ r m n rwm -+ uvn rwm—+ uvn rwo(m)+uve(n
Slq,(, N )_(p< ):q)( ) _ rwg(m) +uve(n)
uvw

hence the induced map S~'¢ is an S~'R-module homomorphism. Considering that S~'M is an

R-module with respect to the action - %t = =%, the map S~ 1o is also an R-module homomorphism.

Proposition 4.25. Let S be a multiplicatively closed subset of a commutative ring R. Let Z be the
category of R-modules. The map S~'(—) that sends an R-module M to S™'M (viewed as either an
R-module or an S~'R-module) and sends an R-module homomorphism @ : M — N to the module

homomorphism S~ ¢ : ST'M — STIN is a covariant functor that preserves bijections.

Proof. Clearly, the induced map S~'idyy is the identity on S~'M. Given any R-module homomor-
phisms ¢ : A — Band y : B— C, it is straightforward to verify that S~ (yo @) =S~ lwoS~ 1. We
conclude that S~ (—) is a functor. Consider a bijective R-module homomorphism y: M — N. If =
lies in the kernel of S~!7, then there exists an element ¢ € S such that y(tm) = ty(m) = 0. By hy-
pothesis that ¥ is injective, we conclude that tm = 0, from which it follows that °* = 0. On the other

hand, for any element % of S~!M, there exists an element m € M such that = Y(;") =51 }/(%)
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by assumption that ¥ is surjective. We conclude that S~!y is a bijection. [l

Corollary 4.26. Let S be a multiplicatively closed subset of a commutative ring R. If there is a

[0 . .
short exact sequence of R-modules 0 - A — B £> C — 0, then there is an induced short exact

—1 —1
sequence 0 — S—1A S—a> S~'B H) S~1C — 0 (of either R-modules or S™'R-modules).

Proof. By Proposition we have that S~ ot is injective and S~! is surjective, so it suffices to
check the exactness of the sequence at S~'B. Considering that S~'f oS la =S~ (Boa) =0, we
have that img(S~'a) C ker(S~!B). If IE’ lies in the kernel of S~! B, then there exists an element z € §
such that B(tb) = tB(b) = 0. Consequently, we may find an element a € A such that &¢(a) = tb and

1r(sa(a) — stb) = 0. We conclude that % = %9 S7'o(4) andker(S™'B) Cimg(S~'er). O

Tst
Observe that if M is an R-module, then S™'R ®x M is an R-module. On the other hand, we
may view ST'R®g M as an S~'R-module via the action 4 - (£ ®@gm) = % @gm by the proof of
Proposition Consider the map ¢ : S™'R x M — S~'M defined by ¢ (f,m) = ~. Observe that
¢ 1s multiplication in the second coordinate, hence it is R-linear in the second coordinate. On the

other hand, for any elements a,r,s € R, u,v € S, and m € M, we have that

ros arv+ su (arv+su)m  arvm  sum r s
oagtim) =0 )= =St —ee(Gm)ro(Sm).

uy uy uy

hence ¢ is R-linear in the first coordinate. We conclude that ¢ is a bilinear R-module homo-

morphism. By the [Universal Property of the Tensor Product] there exists a bilinear R-module

homomorphism y: ST'R®@zr M — S~'M that satisfies y(f QR m) = ~%. We exhibit an R-module
homomorphism y : S~'M — S™'R®z M such that yo y and y oy are the identity homomorphisms.
Given any element 7 € S™IM, let w (%) = ITR ®@gm. Observe that if % = ’;i,/, then there exists an

element ¢ € S such that s'tm = stm’. Consequently, we have that

1p s't g /

Rr M Rr M ®r (s /- 1
— ®rpm=— Qrm= —— QR
s ss't ss't

1z / st /
m)=—Qpr(stm )= ——Qrm = — Qrm
) ss't g ) ss't R s/ RTE

hence y is well-defined. By definition of the tensor product, y is R-linear, hence it is an R-module
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homomorphism. Clearly, we have that yo y is the identity of S~!M. Conversely, we have that oy
is the identity on the pure tensors of S™!R @z M, hence it is the identity on S™'R ®g M. One can

easily verify that both 7 and y are S~!R-module homomorphisms, hence we obtain the following.

Proposition 4.27. Let S be a multiplicatively closed subset of a commutative ring R. Let M be an

R-module. We have that S~'M = SR ®@x M as an R-module and as an S~ R-module.

Corollary 4.28. Let S be a multiplicatively closed subset of a commutative ring R. The R-module

S~IR is flat, i.e., the tensor product S'R @ — preserves exact sequences.
Proof. This follows as a direct consequence of Propositions and O

Corollary 4.29. Let S be a multiplicatively closed subset of a commutative ring R. Localization
commutes with direct sums, i.e., for any (possibly infinite) index set I and any family of R-modules

(M;)cr, we have that §s—1 (Djc M;) = @ieI(S*IMi).

Proof. By Proposition|4.27| we have that S~'M; 22 S~'R @ M; for each index i. Consequently, the

desired result follows immediately from Proposition 0
Our next proposition lists many of the desirable properties of localization.

Corollary 4.30. Let S be a multiplicatively closed subset of a commutative ring R. Let N C M be

R-modules. The following properties hold.

(1) Localization commutes with quotients, i.e., S~'(M/N) = (S~'M)/(S™'N).
(2.) Localization preserves the property of being finitely generated.

(3.) Localization preserves the property of being Noetherian.

(4.) Localization preserves the property of being free (or projective).

(5.) Localization preserves integral extensions.

(6.) Localization commutes with the integral closure, i.e., ST'R = S~1R.
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(7.) Localization preserves reducedness.

Proof. (1.) Use Corollary on the short exact sequence 0 — N — M — M /N — 0; then, apply
the First [somorphism Theorem to obtain the desired result.

(2.) Consider a finitely generated R-module M = R(xy,...,x,). Every element m € M can be
written as m = rix; + - -- + ryx, for some elements rq,...,r, € R. Consequently, every element
e S~M can be written as 2= %f—; +et %”f—; so that S~'M = S‘1R<f—11e, - )1‘—;>

(3.) If M is Noetherian, then every R-submodule of M is finitely generated. One can verify that
every S~!R-submodule of S~!M is of the form S~!N for some R-submodule N of M. By part (2.)
above, every S~ R-submodule of S™'M is finitely generated, hence S~'M is Noetherian.

(4.) If F 1s a free R-module, then it is a direct sum of copies of R, hence S~IF is a direct sum
of copies of S™'R by Proposition Likewise, if P is a projective R-module, then it is a direct
summand of a free R-module, and S~!P is a direct summand of a free S~!R-module.

(5.) Let R C T be an integral extension. By Corollary the inclusion ST!R C §™'T is a

ring extension. Given any element 3 of S~IT, there exist elements aj, ...,d,_1,a, € R such that

S ax™ o ta, x+a, =0g.

n—

By assumption that S is multiplicatively closed, the elements s, ...,s" !, s" belong to S, hence

X\ ﬂ(’ﬁ)”l an—l(f) an _ Or
(s)+s S + +s”_1 Ky +s"_s”

demonstrates that % is integral over S ~—IR. We conclude that S~!T is integral over S™'R.

(6.) By part (4.) above, we find that S~'RC S IR. Conversely, consider an equation

x\* ap /x\n—1 an_1 /X a
RCTO RSO N
u Vi \u Vp—1 \U Vn

of integral dependence over S™'R. Observe that if d = uv; - - -v,_1v,, then by multiplying the pre-
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vious displayed equation by d” /1 and setting ¢; = a;(uvy ---v,_1v,)' /v;, we find that

(V1 Va1 vnX) e (V1 Vo) b (Ve Va1 vnX) e _0

1g

Consequently, there exists an element # € S such that # annihilates the element of R in the numerator.

By multiplying this element by ¢", we obtain an expression of integral dependence
(tvy - vy vpx)t e (tvy - -v,,_lv,flx)"*1 +o e, (tvy -+ vp_1vpx) +t"c, = Og.

We conclude that vy - - -v,_1v,x belongs to R. Considering that each of the elements ,v1,...,v,_1
. X Vv v P o L
lies in S, the element §; = T———" belongsto S 'Rand S"'RC S™'R.

(7.) We prove the contrapositive, i.e., we show that if S™'R is not reduced, then R is not

reduced. Consider a nonzero nilpotent element § € S~IR such that sﬂn = (g)n = 0. By definition of

S~IR, there exists a nonzero element ¢ € S such that 7t = Og and (rt)" = O, hence the element

rt € R is nilpotent; it must be nonzero because | is nonzero by assumption. 0

Localization admits even more useful properties that we omit for the sake of brevity. We direct

the reader to the end of [Rot09, Section 4.7] for further information (cf. pages 198 to 202).

4.3 Further Properties of Hom and Ext
We begin with the observation that Hom commutes with direct products.

Proposition 4.31. Let R be a commutative ring. For any (possibly infinite) index set I and any
families of R-modules (M;)icr and (N;)icr, we have that Homg (D;c; Mi,N) = [[;c; Homg (M;,N)

and Homg (M, [1;c; Ni) = [1icy Homg (M, N;). Particularly, it holds that Homg(R",N) = N".

Proof. Let 0; : M; — @;c;M; denote the ith component inclusion map, i.e., the R-module homo-
morphism that sends an element m € M; to the /-tuple of elements with m in the ith component
and zeros elsewhere. Given any R-module homomorphism ¢ : @,.; M; — N, the I-tuple of com-

posite maps (@ o 0;);es yields an element of [];c; Homg(M;, N). Consider the R-module homomor-
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phism y : Homg (D;c; Mi,N) — [lic; Homg(M;,N) defined by y(¢) = (¢ o 0;)ics. Observe that
¢ belongs to ker v if and only if ¢ o 0; is the zero homomorphism for each index i € I if and
only if ¢ is the zero homomorphism on &);;M;, hence y is injective. Given any element y of
[Lic;Homg(M;,N), we may write ¥ = (7;)ie; for some R-module homomorphisms ¥; : M; — N.
Consider the R-module homomorphism ¢ : @;c;M; — N that sends (m;)ic; — Y.ic;¥i(m;). By
definition, an element of €;c;M; has only finitely many nonzero components, so Y ;c; %(m;) is a
well-defined element of N. Observe that for each index i € I, we have that y;(m;) = ¢ o 6;(m;),
hence we conclude that Yy = (¥ )ie; = (¢ o 0;);er so that y is surjective.

Let 7; : [[;c; Ni — N; denote ith component projection map, i.e., the R-module homomorphism
that sends an element (n;);e; € [[;;N; to the element n; € N;. One can show that the R-module
homomorphism 7 : Homg(M, [1;c;Ni) — [lic;Homg (M, N;) defined by 7(¢) = (m; 0 @);e; is bi-
jective in an analogous manner to the previous paragraph. We note that the last statement of the

proposition follows by Proposition 1.1/ applied to Homg(R",N) = Homg(R,N)". O

Corollary 4.32. Let R be a commutative ring. Let M and N be R-modules. If M is finitely generated
and N is Noetherian, then Homg(M,N) is finitely generated as an R-module. Particularly, if R is

Noetherian and M and N are finitely generated, then Homg(M,N) is finitely generated.

Proof. By assumption, we have that M = R(xy,...,x,) for some elements xy, ..., x,. Consequently,
there exists a short exact sequence of R-modules 0 - K — R" — M — 0; the induced sequence
of R-modules 0 — Homg(M,N) — Homg(R",N) — Homg(K,N) is exact by Proposition Put
another way, there is an injective R-module homomorphism Homg(M,N) — Homg(R",N), so we
may identity Homgz(M,N) as an R-submodule of Homg(R",N). By Proposition the latter R-
module is isomorphic to N”; it is Noetherian by hypothesis, hence we conclude that Homg(M,N)
is finitely generated. We note that the last statement holds because if R is Noetherian, then an

R-module is Noetherian if and only if it is finitely generated. 0

4.4 Further Properties of Tensor Products and Tor

Our next proposition provides an analog of Corollary 4.32] for the tensor product.
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Proposition 4.33. Let R be a commutative ring. If M and N are finitely generated R-modules, then

the tensor product M Qg N is finitely generated as an R-module.

Proof. Every element of M @r N can be written as Zf:l ri(m; ®g n;) for some integer k > 0, some
elements rq,...,r; € R, and some distinct elements my,...,m; € M and ny,...,n; € N. Each of the
elements m; can be written in terms of the generators of M, and each of the elements n; can be
written in terms of the generators of N. Consequently, if M = R(xy,...,x,) and N = R(yy,...,Ys),

the bilinearity of the map 7 implies that M @g N = R(x; ®gy; |1 <i<rand 1 < j<s). O

Remarkably, one can characterize flat R-modules in the following manner.
Proposition 4.34. Let R be a commutative ring. The following properties are equivalent.

(i.) L is a flat R-module.
£> L — 0 is a short exact sequence of R-modules, then the induced sequence

. d
0—>M®XRA mlMﬂ>M®RB M M Qg L — 0 is exact for any R-module M.

(i) If0 A% B

Proof. Given any R-module M, consider the free R-module F indexed by M and the canonical
surjection 7 : F — M with kernel K. Observe that there is a short exact sequence of R-modules
0= K- F % M — 0 such that the R-module homomorphism i : K — F is the inclusion map.

By applying the right-exact functors K ®g —, F ®r —, and M ®g — to any short exact sequence of
B

R-modules 0 - A % B

idg @ra

idg ®r

— L — 0, we obtain the following diagram of R-modules.

K®rA —— KQrB —— KQprL —— 0

i®pidg i®pgidp i®pidy,
~ idr ©rat ~ idp 9r ~
0—>F®RA%F®RB—[3>F®RL—>O
TRRidg TRRridp TRRidy,

-

M®

v

0

! Jres 1
R A ERE o B MR e L 0

v

0

v

0

One can readily verify that the diagram commutes on the pure tensors of each tensor product, hence

the diagram commutes. Even more, the columns and rows of the diagram are exact by Proposition
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and Corollary By the we obtain a short exact sequence of R-modules
ker(i®R idA) — ker(i KRR idB) — ker(i KR idL) S MRIRRA—>MRRB—>M®rL— 0.

By Proposition we conclude that if L is flat, then i ®g idy, is injective so that ker(i ®gidz) = 0

. "
and 0 - M ®rA MM@RB%M®RL—>0B exact.

We obtain the converse as a corollary of a later proposition. Explicitly, if condition (ii.) holds,

then Torlf (M, L) = 0 for all R-modules M so that L is a flat R-module. [l

4.5 Commutative Diagrams
One of the most useful facts in homological algebra is the following.

Lemma 4.35 (Snake Lemma). Consider the following commutative diagram of R-modules.

A2, p P ¢ s 0
| U K
0 vy D% v E_ £, F

If the rows of this diagram are exact, then there exists an exact sequence of R-modules

/ / D / E / F
ker(pg—>kerIVE—>ker}/£>, 8—), LA .
mg ¢ mgy  1mgy

Even more, if o is injective and € is surjective, then o is injective and €' is surjective.

Proof. One can (and should) prove the Snake Lemma (at least once) via the method of “diagram

chasing.” We leave the details to the enjoyment of the reader (cf. [Gatl13, Lemma 4.7]). O

Using the one can deduce the following useful fact.

Corollary 4.36 (Short Five Lemma). Consider the following commutative diagram of R-modules.

R

0 s D , ELF s 0

@, p B
lw
E
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If the rows of this diagram are exact, then  is injective (or surjective) if ¢ and 7y are injective (or

surjective). Even more, if any two of @, Y, and 'y are isomorphisms, the third is an isomorphism.

Proof. By the there exists an exact sequence of R-modules

D E F
ker¢p — kery — kery — - — - — - .
mge 1mgy  1mgy

If ¢ and vy are injective, then ker ¢ = 0 and ker y = 0 imply that ker y = 0. If ¢ and Y are surjective,
then D =img ¢ and F = imgy imply that E/imgy = 0, i.e., E = img y. If any two of @, y, and y
are isomorphisms, then the kernel and cokernel of the third map will be trapped between zeros in

the exact sequence; this forces both of these modules to be zero so the map is an isomorphism. [

Using the [Short Five Lemmal, we obtain the [Splitting Lemma) (cf. [Gatl3], Corollary 4.14]);

however, it is possible to provide a proof by elementary means as follows.

Lemma 4.37 (Splitting Lemma). A short exact sequence of R-modules 0 — A 2B £> C — O splits

if any of the following equivalent conditions holds.

(i.) There exists an R-module homomorphism ¢ : B — A such that idy = @ o «.
(ii.) There exists an R-module homomorphism y: C — B such that idc = B o .

(i11.) There exists an R-module isomorphism Y : B — A ® C such that y o . is the first component

inclusion map A — A® C and B oy~ is the second component projection map A®C — C.

Proof. By the proofs of Propositions [[.4]and [.6] it suffices to prove that (iii.) == (i.) and (iii.)
—> (ii.). Observe that if Yo « is the first component inclusion map A — A @ C, then the first
component projection map 7; : A @ C — A satisfies that idy = 7m; o yo o. Likewise, if oy ™! is
the second component projection map, then the second component inclusion map 0, : C - A®C

satisfies idc = o 1//_1 o 02. We conclude that (iii.) = (i.) and (iii.) = (i.). [

One can also prove a general version of the [Short Five Lemma|from which the above follows.
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Lemma 4.38 (Five Lemma). Consider the following commutative diagram of R-modules.

o o
Al — 5 Ay —2 As s Ay s As

l‘l’l 1 >Bl;l)z ; l%

B B > s By » By ——— Bs

If the rows of this diagram are exact, then the following statements hold.

1.) If @y is surjective and @2 and @4 are injective, then @3 is injective.

2.) If s is injective and @, and @4 are surjective, then Qs is surjective.

Farticularly, if ©1, @2, @4, and @5 are isomorphisms, then @3 is an isomorphism.
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