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1 Hom and (Contravariant) Ext

Broadly, homological algebra is the study of homomorphisms between algebraic structures such

as groups, rings, and modules. One of the most basic motivations to study homological algebra is

the observation that the Isomorphism Theorems hold in each of the aforementioned settings, hence

it is natural to seek to generalize these theorems to all algebraic structures that behave like groups,
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rings, and modules. In this section, we will develop many of the tools needed throughout this note;

we refer the interested reader to [Rot09] for many more interesting details.

Unless otherwise stated, we assume that a commutative ring R possesses a multiplicative iden-

tity 1R. Given any R-modules M and N, we may consider the set of R-module homomorphisms

HomR(M,N) = {ϕ : M → N | ϕ is an R-module homomorphism}.

One can readily verify that HomR(M,N) is itself an R-module via the action (r ·ϕ)(x) = rϕ(x).

Our next two propositions illuminate key properties of HomR(M,N) we will soon exploit.

Proposition 1.1. Let M be an R-module. We have that HomR(R,M)∼= M as R-modules.

Proof. Observe that an R-module homomorphism ϕ : R → M is uniquely determined by ϕ(1R).

Explicitly, for any element r ∈ R, we have that ϕ(r) = rϕ(1R), hence ϕ can be identified with

the R-module homomorphism that sends r 7→ rϕ(1R). Consequently, we obtain an R-module ho-

momorphism ψ : HomR(R,M)→ M defined by ψ(ϕ) = ϕ(1R). Clearly, it is surjective: for each

element m ∈ M, choose the R-module homomorphism ϕ : R → M defined by ϕ(r) = rm. Likewise,

we have that ϕ ∈ kerψ if and only if ϕ(1R) = 0R if and only if ϕ(r) = 0 for all elements r ∈ R if

and only if ϕ is the zero homomorphism. We conclude that ψ is an R-module isomorphism.

Observe that for any R-module homomorphisms α : A → B and β : B → C, there exists an R-

module homomorphism β ◦α : A→C. Consequently, for any R-module homomorphism β : B→C,

there is a map HomR(A,β ) : HomR(A,B)→ HomR(A,C) defined by HomR(A,β )(α) = β ◦α.

Proposition 1.2. Let R be a commutative ring. Let A be an R-module. Let R be the category of

R-modules. The map HomR(A,−) : R → R that sends B to HomR(A,B) and sends an R-module

homomorphism β : B →C to the R-module homomorphism HomR(A,β ) is a covariant functor.

Proof. We have already established that HomR(A,B) is an R-module for any R-module B. By

definition of covariant functor, it suffices to show that (1.) HomR(A, idB) = idHomR(A,B) for any R-

module B and (2.) HomR(A,γ ◦β ) =HomR(A,γ)◦HomR(A,β ) for any R-module homomorphisms
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β : B → C and γ : C → D. Observe that HomR(A, idB)(α)(a) = (idB ◦α)(a) = α(a) for every R-

module homomorphism α : A → B and every element a ∈ A, hence (1.) holds. Likewise, we have

that HomR(A,γ ◦β )(α) = γ ◦β ◦α = γ ◦HomR(A,β )(α) = HomR(A,γ)◦HomR(A,β )(α) for any

R-module homomorphisms α : A → B, β : B →C, and γ : C → D so that (2.) holds.

Likewise, for any R-module homomorphisms α : A→B and β : B→C, there is an induced map

HomR(α,C) : HomR(B,C)→ HomR(A,C) defined by HomR(α,C)(β ) = β ◦α. One can demon-

strate in a manner analogous to Proposition 1.2 that the map HomR(−,C) : R →R that sends B to

HomR(B,C) and sends an R-module homomorphism α : A → B to the R-module homomorphism

HomR(α,C) is a contravariant functor, i.e., HomR(β ◦α,C) = HomR(α,C)◦HomR(β ,C).

We say that a sequence of R-modules and R-module homomorphisms A α−→ B
β−→C is exact at B

whenever kerβ = imgα. Consequently, a sequence of R-modules and R-module homomorphisms

· · · ϕn+1−−−→ Mn
ϕn−→ Mn−1

ϕn−1−−−→ ·· · is exact whenever it is exact at Mi for each integer i. Particularly, a

sequence 0 → A α−→ B
β−→C → 0 is a short exact sequence if and only if C = ker(C → 0) = imgβ

(i.e., β is surjective), kerβ = imgα, and kerα = img(0 → A) = 0 (i.e., α is injective).

Proposition 1.3. Let M and N be R-modules. If 0 → A α−→ B
β−→C → 0 is a short exact sequence of

R-modules, the sequences 0→HomR(M,A)
HomR(M,α)−−−−−−−→HomR(M,B)

HomR(M,β )−−−−−−−→HomR(M,C) and

0 → HomR(C,N)
HomR(β ,N)−−−−−−→ HomR(B,N)

HomR(α,N)−−−−−−−→ HomR(A,N) are also exact. Consequently,

the functors HomR(M,−) and HomR(−,N) are left-exact on the category of R-modules.

Proof. We will prove the first claim; the second follows analogously. By Proposition 1.2, the first

sequence is well-defined, so it suffices to prove that it is exact. Consider an R-module homomor-

phism ϕ : M → A such that α ◦ϕ = HomR(M,α)(ϕ) is the zero homomorphism. By hypothesis,

we have that kerα = 0 and α ◦ϕ(x) = 0 for all elements x ∈ M, hence we conclude that ϕ is the

zero homomorphism. Consequently, the first sequence is exact at HomR(M,A).

By assumption that kerβ = imgα, it follows that β ◦α ◦ϕ is the zero homomorphism for any

R-module homomorphism ϕ : M → A. Conversely, take an R-module homomorphism ψ : M → B

such that β ◦ψ is the zero homomorphism. By definition, we have that ψ(x) belongs to kerβ
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for all elements x ∈ M. Considering that kerβ = imgα by assumption, for each element x ∈ M,

there exists an element ax ∈ A such that ψ(x) = α(ax). By hypothesis that ϕ and α are R-module

homomorphisms, for every element x ∈ M and r ∈ R, there exist elements ax,ay,arx+y ∈ A such

that α(rax +ay) = rα(ax)+α(ay) = rψ(x)+ψ(y) = ψ(rx+ y) = α(arx+y) and rax +ay = arx+y

by assumption that α is injective. We conclude that the map σ : M → A defined by σ(x) = ax is an

R-module homomorphism that satisfies ψ = α ◦σ , from which it follows that ψ is in the image of

HomR(M,α), i.e., the first sequence is exact at HomR(M,B).

Our previous proposition ensures that if we apply the covariant functor HomR(M,−) to any

short exact sequence of R-modules 0 → A α−→ B
β−→ C → 0, we obtain an exact sequence of R-

modules 0 → HomR(M,A)
HomR(M,α)−−−−−−−→ HomR(M,B)

HomR(M,β )−−−−−−−→ HomR(M,C); however, the in-

duced cochain complex 0→HomR(M,A)
HomR(M,α)−−−−−−−→HomR(M,B)

HomR(M,β )−−−−−−−→HomR(M,C)→ 0 is

exact at HomR(M,C) if and only if HomR(M,β ) is surjective if and only if for every R-module ho-

momorphism ϕ : M →C, there exists an R-module homomorphism ψ : M →B such that ϕ = β ◦ψ.

Proposition 1.4. Let R be a commutative ring. We say that an R-module P is projective if it

satisfies any of the following equivalent conditions.

(i.) If 0 → A α−→ B
β−→C → 0 is a short exact sequence of R-modules, then the sequence

0 → HomR(P,A)
HomR(P,α)−−−−−−→ HomR(P,B)

HomR(P,β )−−−−−−→ HomR(P,C)→ 0

is exact, i.e., the functor HomR(P,−) is right-exact on the category of R-modules.

(ii.) If β : B →C is a surjective R-module homomorphism and ϕ : P →C is any R-module homo-

morphism, then there exists an R-module homomorphism ψ : P → B such that ϕ = β ◦ψ.

(iii.) There exist R-modules B and C, a surjective R-module homomorphism β , and R-modules

homomorphisms ϕ and ψ such that the following diagram commutes.

P

B C 0

∃ψ
ϕ

β
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(iv.) Every short exact sequence 0 → A α−→ B
β−→ P → 0 of R-modules splits. Explicitly, there exists

an R-module isomorphism ψ : B → A⊕C such that ψ ◦α is the first component inclusion

map A → A⊕C and β ◦ψ−1 is the second component projection map A⊕C →C.

(v.) There exists an R-module Q such that P⊕Q is a free R-module.

Proof. By Proposition 1.3, one can readily deduce that the first three conditions are equivalent,

so it suffices to prove that (ii.) =⇒ (iv.) =⇒ (v.) =⇒ (i.). Consider a short exact sequence

of R-modules 0 → A α−→ B
β−→ P → 0. By hypothesis, there exists an R-module homomorphism

ψ : P → B such that idP = β ◦ψ. Particularly, the following diagram of R-modules commutes.

P

0 A B P 0

idP
ψ

α β

By assumption that β is surjective, for any element p ∈ P, there exists an element b ∈ B such that

p = β (b) and ψ(p) = ψ ◦β (b). Conversely, for every element b ∈ B, we have that β (b) ∈ P, and

we may consider the element ψ ◦β (b) of B. Ultimately, for any element b ∈ B, observe that

β (b−ψ ◦β (b)) = β (b)−β ◦ψ ◦β (b) = β (b)− idP ◦β (b) = β (b)−β (b) = 0

so that b−ψ ◦β (b) belongs to kerβ . By hypothesis that kerβ = imgα, there exists an element

a∈A such that b−ψ ◦β (b)=α(a) and b=α(a)+ψ ◦β (b). We conclude that B= imgα+ imgψ.

We claim moreover that imgα ∩ imgψ = {0}. For if x ∈ imgα ∩ imgψ, then α(a) = x = ψ(y) for

some elements a ∈ A and y ∈ P. Consequently, we have that y = β ◦ψ(y) = β (x) = β ◦α(a) = 0

and x = ψ(y) = ψ(0) = 0. We conclude that B = imgα ⊕ imgψ ∼= A⊕P, where the isomorphism

follows from the fact that α is injective by hypothesis and ψ is injective because β is a left-inverse.

Ultimately, the R-module isomorphism ϕ : B→ A⊕P defined by ϕ(α(a)+ψ(p)) = (a, p) satisfies

that ϕ ◦α is the inclusion map A → A⊕P and β ◦ϕ−1 is the projection map A⊕P → P.

Every R-module is the homomorphic image of a free R-module. Particularly, there exists a

free R-module F and an R-module K such that 0 → K → F → P → 0 is a short exact sequence of
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R-modules. If condition (iv.) holds, then we have that F = P⊕K is a free R-module.

Last, we will assume that property (v.) holds. Consider a short exact sequence of R-modules

0 → A → B → C → 0 with the surjective map β : B → C specified. We claim that HomR(P,−) is

right-exact, i.e., we must show that for every R-module homomorphism ϕ : P →C, there exists an

R-module homomorphism ψ : P → B such that ϕ = β ◦ψ. By hypothesis, there exists an R-module

Q such that F = P⊕Q is free. Consequently, there exists an R-module basis B = { fi | i ∈ I} of

F. Let ρ : P → F denote the first component inclusion map, and let σ : F → P denote the second

component projection map. By assumption that β is surjective, every element of C can be written

as β (b) for some element b∈B. We may therefore find elements bi of B such that β (bi) = ϕ ◦σ( fi)

for each index i. By the freeness of F, there exists a unique homomorphism γ : F → B such that

γ( fi) = bi. Observe that β ◦ γ( fi) = β (bi) = ϕ ◦σ( fi) so that β ◦ γ = ϕ ◦σ , as B is a basis. We

conclude that ϕ = ϕ ◦σ ◦ρ = β ◦ γ ◦ρ = β ◦ψ for the map ψ = γ ◦ρ ∈ HomR(P,B).

Corollary 1.5. Every free R-module is projective.

By Proposition 1.3, if we apply the contravariant functor HomR(−,N) to any short exact se-

quences of R-modules 0 → A α−→ B
β−→ C → 0, we obtain an exact sequence of R-modules 0 →

HomR(C,N)
HomR(β ,N)−−−−−−→HomR(B,N)

HomR(α,N)−−−−−−−→HomR(A,N). Like before, the induced map HomR(α,N)

is surjective if and only if for every R-module homomorphism ϕ : A → N, there exists an R-module

homomorphism ψ : B → N such that ϕ = ψ ◦α.

Proposition 1.6. Let R be a commutative ring. We say that an R-module Q is injective if it satisfies

any of the following equivalent conditions.

(i.) If 0 → A α−→ B
β−→C → 0 is a short exact sequence of R-modules, then the sequence

0 → HomR(C,Q)
HomR(β ,Q)−−−−−−→ HomR(B,Q)

HomR(α,Q)−−−−−−−→ HomR(A,Q)→ 0

is exact, i.e., the functor HomR(−,Q) is right-exact on the category of R-modules.
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(ii.) If α : A → B is an injective R-module homomorphism and ϕ : A → Q is any R-module homo-

morphism, then there exists an R-module homomorphism ψ : B → Q such that ϕ = ψ ◦α.

(iii.) There exist R-modules A and B, an injective R-module homomorphism α, and R-modules

homomorphisms ϕ and ψ such that the following diagram commutes.

Q

0 A B

ϕ

α

∃ψ

(iv.) Every short exact sequence 0→Q α−→ B
β−→C → 0 of R-modules splits. Explicitly, there exists

an R-module isomorphism ψ : B → Q⊕C such that ψ ◦α is the first component inclusion

map Q → Q⊕C and β ◦ψ−1 is the second component projection map Q⊕C →C.

(v.) If Q is an R-submodule of M, then there exists an R-module P such that M = P⊕Q.

Proof. Conditions (i.), (ii.), and (iii.) are equivalent by Proposition 1.3, so it suffices to establish

that (iii.) =⇒ (iv.) =⇒ (v.) =⇒ (ii.). Observe that any short exact sequence of R-modules whose

first nonzero term is Q can be completed to a commutative diagram of R-modules as follows.

Q

0 Q B C 0α

idQ
∃ψ

β

Consequently, the R-module homomorphism ψ : B → Q satisfies idQ = ψ ◦α. Given any element

b ∈ B, we have that b = α ◦ψ(b)+(b−α ◦ψ(b)). Observe that

ψ(b−α ◦ψ(b)) = ψ(b)−ψ ◦α ◦ψ(b) = ψ(b)−ψ(b) = 0,

hence we have that b−α ◦ψ(b)∈ kerψ. We conclude that B = imgα +kerψ. Even more, the sum

is direct: if b ∈ imgα ∩kerψ, then b = α(q) so that 0 = ψ(b) = ψ ◦α(q) = q and b = α(0) = 0.

By hypothesis that α is injective, we find that imgα ∼= Q. On the other hand, for every element

c ∈C, there exists an element b ∈ B such that c = β (b). Considering that B = imgα ⊕kerψ, there
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exist unique elements q ∈ Q and x ∈ kerψ such that c = β (b) = β (α(q)+ x) = β (x), where the

third equality follows from the fact that kerβ = imgα. We conclude that kerψ ∼=C. Ultimately, we

find that B = imgα ⊕kerψ ∼= Q⊕C via the R-module homomorphism ψ(α(q)+ x) = (q,β (x)).

Observe that if Q is an R-submodule of M, then the inclusion Q ⊆ M induces a short exact

sequence of R-modules 0 → Q → M → M/Q → 0. If every short exact sequence of R-modules

splits, then we have that M ∼= Q⊕ (M/Q), hence Q is a direct summand of M.

We prove (v.) =⇒ (ii.) as a corollary of a later proposition. Explicitly, Q is an R-submodule

of an injective R-module E, so it is a direct summand of E. But this implies that Q is injective.

Our next example illustrates that some modules are neither projective nor injective.

Example 1.7. Let n ≥ 2 be an integer. Let M = Z/nZ be the cyclic group of order n. Observe

that M is a Z-module because it is an abelian group; however, it is not projective because for

any abelian group G, the Z-module (Z/nZ)⊕G has torsion. On the other hand, multiplication

by n is an injective Z-module homomorphism n· : Z → Z; however, for the canonical surjection

π : Z→ M, there does not exist a Z-module homomorphism ψ : Z→ M such that π = ψ ◦ ·n, as

the latter is always zero. Consequently, the Z-module Z/nZ is neither projective nor injective.

Consequently, we may seek to measure the injective (or projective) “defect” of a module over

a commutative unital ring. We define this notion rigorously as follows.

Let M be an R-module. We say that a sequence of R-modules and R-module homomorphisms

Z• : · · · zn+1−−→ Zn
zn−→ ·· · z2−→ Z1

z1−→ Z0
z0−→ M

z−1−−→ 0

is a (left) resolution of M if Z• is exact at M and Zi for each integer i ≥ 0. If the R-modules Zi are

free for each integer i ≥ 0, then Z• is simply called a free resolution of M.

Proposition 1.8. Every R-module admits a free resolution.

Proof. Let M be an R-module. Observe that there exists a free R-module F0 indexed by M and a

surjective R-module homomorphism f0 : F0 → M; its kernel injects into F0 via the inclusion map
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i0 : ker f0 → F0. Considering that ker f0 is an R-module, there exists a free R-module F1 indexed by

ker f0 and a surjective R-module homomorphism π1 : F1 → ker f0. Consequently, the composition

f1 = i0 ◦π1 yields a map f1 : F1 → F0 such that img f1 = imgπ1 = ker f0. Likewise, the R-module

kerπ1 injects into F1 via the inclusion map i1 : kerπ1 → F1, and there exists a free R-module F2

indexed by kerπ1 and a surjective R-module homomorphism π2 : F2 → kerπ1. Consequently, the

composition f2 = i1 ◦ π2 yields a map f2 : F2 → F1 such that img f2 = imgπ2 = kerπ1 = ker f1.

Continuing in this manner produces the following commutative diagram of R-modules.

kerπ1

F• : · · · F3 F2 F1 F0 M 0

kerπ2 ker f0

i1

f4 f3

π3

f2

π2

f1

π1

f0 f−1

i2 i0

Consequently, the sequence F• is a resolution of M in which each of the R-modules Fi is free.

Combined, Proposition 1.8 and Corollary 1.5 imply that any R-module M admits a projective

resolution, i.e., a (left) resolution P• : · · · pn+1−−→ Pn
pn−→ ·· · p2−→ P1

p1−→ P0
p0−→ M

p−1−−→ 0 in which Pi is

projective for each integer i ≥ 0. Given an R-module N, consider the cochain complex

HomR(P•,N) : 0 → HomR(P0,N)
p∗0−→ HomR(P1,N)

p∗1−→ ·· ·
p∗n−1−−→ HomR(Pn,N)

p∗n−→ ·· ·

with cochain maps defined by p∗i = HomR(pi+1,N) for each integer i ≥ 0. We define the ith co-

homology module ExtiR(M,N) = ker p∗i / img p∗i−1 for each integer i ≥ 0. Crucially, Cartan and

Eilenberg demonstrated that ExtiR(M,N) is independent of the choice of a projective resolution of

M, hence the R-modules ExtiR(M,N) are well-defined (cf. [Rot09, Proposition 6.56]).

Proposition 1.9. Let N be an R-module. The following properties hold.

(1.) We have that Ext0R(M,N)∼= HomR(M,N) for all R-modules M.

(2.) Every short exact sequence of R-modules 0 → M′ → M → M′′ → 0 induces an exact sequence

· · · → Exti−1
R (M′′,N)→ ExtiR(M

′,N)→ ExtiR(M,N)→ ExtiR(M
′′,N)→ Exti+1

R (M′,N)→ ··· .
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(3.) We have that ExtiR(M,N) = 0 for all i ≥ 1 and all R-modules M if and only if N is injective.

Proof. (1.) Consider a projective resolution P• of M that ends with the terms P1
p1−→ P0

p0−→ M → 0.

By Proposition 1.3, we may apply HomR(−,N) to obtain the sequence of R-modules

0 → HomR(M,N)
HomR(p0,N)−−−−−−−→ HomR(P0,N)

HomR(p1,N)−−−−−−−→ HomR(P1,N)

exact in the first two places. Consequently, we find that ker p∗0 = imgHomR(p0,N)∼= HomR(M,N)

by the First Isomorphism Theorem. We conclude that Ext0R(M,N) = ker p∗0 ∼= HomR(M,N).

(3.) We assume first that N is injective. By Proposition 1.6, the functor HomR(−,N) is exact,

hence for any R-module M and any projective resolution P• of M, the induced cochain complex

HomR(P•,N) is exact. We conclude that ExtiR(M,N) = 0 for all integers i ≥ 1. Conversely, suppose

that ExtiR(M,N) = 0 for all i ≥ 1 and all R-modules M. Consequently, for any short exact sequence

of R-modules 0→M′ →M →M′′ → 0, there exists a long exact sequence of R-modules that begins

0 → HomR(M′′,N)→ HomR(M,N)→ HomR(M′,N)→ 0. By Proposition 1.4, N is injective.

We omit the proof of property (2.), but we refer the reader to [Rot09, Corollary 6.46].

One can show that ExtiR(−,N) is a contravariant functor from the category of R-modules to

itself that preserves multiplication (cf. [Rot09, Theorem 6.37 and Proposition 6.38]), hence Propo-

sition 1.9 implies that the functors ExtiR(−,N) measure the injective “defect” of N.

One might naturally expect that in order to rigorously define the projective “defect” of an R-

module M, we must look at the cohomology modules of the induced cochain complex obtained

by applying HomR(M,−) to an injective resolution of some R-module; however, it is unclear that

an arbitrary R-module admits an injective resolution. Consequently, we must first establish that

every R-module admits an injective resolution; then, we will proceed in a manner analogous to

the exposition preceding Proposition 1.9. We begin by constructing a functor from the category of

R-modules to itself that forms an “adjoint pair” with the covariant functor HomR(M,−).
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2 Tensor Products and Tor

Let M and N be R-modules. Consider the free R-module F with basis M×N. Explicitly, we view

F as the set of all finite formal R-linear combinations of pairs of elements of F with pointwise

addition and scalar multiplication. Let R denote the R-submodule of F generated by all elements

of the form (m1 +m2,n)− (m1,n)− (m2,n), (m,n1 + n2)− (m,n1)− (m,n2), (rm,n)− r(m,n),

and (m,rn)− r(m,n) for any element r ∈ R. We define the tensor product of M and N with

respect to R as the quotient R-module M ⊗R N = F/R. Observe that every element of M ⊗R N is

of the form ∑
k
i=1 ri(mi,ni)+R for some integer k ≥ 0, some elements r1, . . . ,rk ∈ R, and some

distinct elements m1, . . . ,mk ∈ M, and n1, . . . ,nk ∈ N. Conventionally, we write such an element as

∑
k
i=1 ri(mi ⊗R ni); elements of the form m⊗R n are called the pure tensors of M ⊗R N, hence by

definition, the pure tensors generated M⊗R N as an R-module. Even more, by construction, there

is a canonical R-module homomorphism τ : M×N → M⊗R N defined by (m,n) 7→ m⊗R n; it is R-

bilinear, i.e., it satisfies τ(m1 +m2,n) = τ(m1,n)+ τ(m2,n), τ(m,n1 +n2) = τ(m,n1)+ τ(m,n2),

and τ(rm,n) = rτ(m,n) = τ(m,rn) for all elements m,m1,m2 ∈ M, n,n1,n2 ∈ N, and r ∈ R.

One can alternatively describe the tensor product of M and N with respect to R as the unique

solution to the following universal mapping problem. Given any R-modules M and N, we seek an

R-module T and a bilinear R-module homomorphism τ : M×N → T such that for any R-module L

and any bilinear R-module homomorphism ϕ : M×N → L, there exists a unique bilinear R-module

homomorphism γ : T → L such that ϕ = γ ◦ τ (cf. [Gat13, Propositions 5.4 and 5.5]).

Proposition 2.1 (Universal Property of the Tensor Product). Let R be a commutative ring. Let M

and N be R-modules. If L is an R-module such that there exists a bilinear R-module homomorphism

ϕ : M×N → L, then there exists a unique bilinear R-module homomorphism γ : M⊗R N → L such

that ϕ = γ ◦ τ, i.e., such that the following diagram of R-modules commutes.

M×N M⊗R N

L

τ

ϕ ∃!γ

Unsurprisingly, the Universal Property of the Tensor Product yields an abundance of results.
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Proposition 2.2. Let R be a commutative ring. Let M and N be R-modules.

(1.) We have that M⊗R N ∼= N ⊗R M.

(2.) We have that R⊗R M ∼= M.

(3.) We have that (R/I)⊗R M ∼= M/IM for any ideal I of R.

(4.) For any (possibly infinite) index set I and any family of R-modules (Mi)i∈I, we have that

(
⊕

i∈I Mi)⊗R N ∼=
⊕

i∈I(Mi ⊗R N), i.e., the tensor product commutes with direct sums.

Proof. (1.) By the Universal Property of the Tensor Product, the bilinear R-module homomor-

phisms σ1 : M × N → N ⊗R M and σ2 : N × M → M ⊗R N defined by σ1(m,n) = n ⊗R m and

σ2(n,m) = m⊗R n induce the following commutative diagrams of R-modules.

M×N M⊗R N N ×M N ⊗R M

N ⊗R M M⊗R N

σ1

τ1

∃γ1
σ2

τ2

∃γ2

We claim that γ1 and γ2 are inverses, hence they are isomorphisms. Observe that for every element

(m,n) ∈ M ×N, we have that τ2(n,m) = n⊗R m = σ1(m,n) = γ1 ◦ τ1(m,n) = γ1(m⊗R n). Con-

sequently, we find that γ2 ◦ γ1(m⊗R n) = γ2 ◦ τ2(n,m) = σ2(n,m) = m⊗R n so that γ2 ◦ γ1 is the

identity homomorphism on the pure tensors of M ⊗R N. Considering that the pure tensors gener-

ated M ⊗R N as an R-module, we conclude that γ2 ◦ γ1 is the identity homomorphism on M ⊗R N.

Conversely, γ1 ◦ γ2 is the identity homomorphism on N ⊗R M, as desired.

(2.) By definition, the R-module action of R on M induces a bilinear R-module homomorphism

µ : R×M → M defined by µ(r,m) = rm. Once again, the Universal Property of the Tensor Product

guarantees the existence of a bilinear R-module homomorphism γ : R⊗R M → M that satisfies

rm= µ(r,m) = γ ◦τ(r,m) = γ(r⊗R m) for all elements (r,m)∈ R×M. We will construct an inverse

homomorphism for γ. Consider the map ϕ : M → R⊗R M defined by ϕ(m) = 1R ⊗R m. By the

properties of the tensor product, ϕ is an R-module homomorphism. Observe that for every element

m ∈ M, we have that m = 1Rm = γ(1R ⊗R m) = γ ◦ϕ(m). Conversely, for any pure tensor r⊗R m,

we have that r⊗R m = r(1R ⊗R m) = rϕ(m) = ϕ(rm) = ϕ ◦ γ(r⊗R m).

12



(3.) We may view M/IM as an R/I-module via the action (r + I) · (m + IM) = rm + IM.

Consequently, we obtain a bilinear R-module homomorphism µ : (R/I)×M → M/IM defined by

µ(r+ I,m) = rm+ IM; the Universal Property of the Tensor Product ensures that there is a bilinear

R-module homomorphism γ : (R/I)⊗R M → M/IM that sends (r+ I)⊗R m 7→ rm+ IM. We claim

that the R-linear map ϕ : M/IM → (R/I)⊗R M defined by ϕ(m+ IM) = (1R + I)⊗R m is well-

defined. If m+ IM = n+ IM, then there exist elements r1, . . . ,rk ∈ I and x1, . . . ,xk ∈ M such that

m−n = r1x1 + · · ·+ rkxk. Considering that ri + I = 0R + I for each integer 1 ≤ i ≤ k, we find that

(1R + I)⊗R (m−n) = (1R + I)⊗R

(
k

∑
i=1

rixi

)
=

k

∑
i=1

[(ri + I)⊗R xi] = 0

so that ϕ(m+ IM) = (1R + I)⊗R m = (1R + I)⊗R n = ϕ(n+ IM). One can check in a manner

analogous to the previous paragraph the ϕ and γ are inverse homomorphisms.

(4.) Given any (possibly infinite) index set I and any family of R-modules (Mi)i∈I, the tensor

product yields a bilinear R-module homomorphism σ : (
⊕

i∈I Mi)×N →
⊕

i∈I(Mi⊗R N) that sends

((mi)i∈I,n) 7→ (mi⊗R n)i∈I. By the Universal Property of the Tensor Product, there exists a bilinear

R-module homomorphism γ : (
⊕

i∈I Mi)⊗R N →
⊕

i∈I(Mi ⊗R N) such that σ = γ ◦ τ. Likewise,

for each index i ∈ I, there exists an R-module homomorphism ϕi : Mi ⊗R N → (
⊕

i∈I Mi)⊗R N

that sends mi ⊗R n 7→ (δi jm j) j∈I ⊗R n for the Kronecker delta δi j. By definition, the elements of⊕
i∈I(Mi⊗R N) are I-tuples with finitely many nonzero components, hence we obtain an R-module

homomorphism ϕ :
⊕

i∈I(Mi⊗R N)→ (
⊕

i∈I Mi)⊗R N that sends (mi⊗R n)i∈I 7→ ∑i∈I ϕi(mi⊗R n).

One can readily verify that γ and ϕ are inverses on the pure tensors, hence they are inverses.

Our next proposition extends the notion of a tensor product to R-module homomorphisms.

Proposition 2.3. Let R be a commutative ring. Let ϕ : M → M′ and ψ : N → N′ be R-module

homomorphisms. There exists a bilinear R-module homomorphism γϕ,ψ : M ⊗R N → M′ ⊗R N′

defined by γϕ,ψ(m⊗R n)=ϕ(m)⊗R ψ(n). Consequently, the assignment η(ϕ⊗R ψ)= γϕ,ψ induces

an R-module homomorphism η : HomR(M,M′)⊗R HomR(N,N′)→ HomR(M⊗R N,M′⊗R N′).

Proof. Consider the map σ : M×N → M′⊗R N′ defined by σ(m,n) = ϕ(m)⊗R ϕ(n). By hypoth-
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esis that ϕ and ψ are R-module homomorphisms, it follows that σ is a bilinear R-module homo-

morphism by construction of the tensor product. Consequently, by the Universal Property of the

Tensor Product, there exists a unique bilinear R-module homomorphism γϕ,ψ : M⊗R N →M′⊗R N′

defined by γϕ,ψ(m⊗R n) = ϕ(m)⊗R ψ(n). Put another way, the assignment η(ϕ ⊗R ψ) = γϕ,ψ in-

duces a well-defined map η : HomR(M,M′)⊗R HomR(N,N′) → HomR(M ⊗R N,M′⊗R N′); it is

not difficult to verify that η is R-linear, but we leave the details to the reader.

Remark 2.4. Often, the induced R-module homomorphism γϕ,ψ : M⊗R N → M′⊗R N′ is denoted

simply by ϕ ⊗R ψ; this is an abuse of notation, but the meaning is clear.

Corollary 2.5. Let R be a commutative ring. Let M be an R-module. Let R be the category of

R-modules. The map M⊗R − : R → R that sends A to M⊗R A and sends an R-module homomor-

phism ϕ : A → A′ to the R-module homomorphism idM ⊗Rϕ is a covariant functor.

Proof. By construction, M⊗R N is an R-module for any R-module N; we need only establish that

(1.) idM ⊗R idN = idM⊗RN for any R-module N and (2.) idM ⊗R(ψ ◦ϕ) = (idM ⊗Rψ)◦ (idM ⊗Rϕ)

for any R-module homomorphisms ϕ : N → N′ and ψ : N′ → N′′. By Remark 2.4, we have that

(idM ⊗R idN)(m⊗R n)=m⊗R n= idM⊗RN(m⊗R n); because these maps agree on the pure tensors of

M⊗R N, they are equal as homomorphisms. On the other hand, for any R-module homomorphisms

ϕ : N → N′ and ψ : N′ → N′′, we have that (idM ⊗R(ψ ◦ ϕ))(m ⊗R n) = m ⊗R (ψ ◦ ϕ(n)) and

similarly (idM ⊗Rψ)◦ (idM ⊗Rϕ)(m⊗R n) = (idM ⊗Rψ)(m⊗R ϕ(n)) = m⊗R (ψ ◦ϕ(n)).

Given a functor from the category of R-modules to itself, one naturally wonders about its

behavior on short exact sequences of R-modules. By Corollary 2.5, for any short exact sequence

of R-modules 0 → A α−→ B
β−→ C → 0 and any R-module M, we obtain an induced sequence of

R-modules M⊗R A
idM ⊗Rα−−−−−→ M⊗R B

idM ⊗Rβ−−−−−→ M⊗R C. By hypothesis that β is surjective, for each

element c ∈C, there exists an element b ∈ B such that c = β (b). Consequently, for each pure tensor

m⊗R c of M ⊗R C, there exists a pure tensor m⊗R b of M ⊗R B such that m⊗R c = m⊗R β (b).

Considering that the pure tensors of M ⊗R C generate it as an R-module, we conclude that the

induced map idM ⊗Rβ : M⊗R B → M⊗R C is surjective; this proves the following.
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Proposition 2.6. Let M be an R-module. If 0 → A α−→ B
β−→ C → 0 is a short exact sequence of

R-modules, then the induced sequence M⊗R A
idM ⊗Rα−−−−−→ M⊗R B

idM ⊗Rβ−−−−−→ M⊗R C → 0 is also exact.

Consequently, the functor M⊗R − is right-exact on the category of R-modules.

Proposition 2.7. Let R be a commutative ring. We say that an R-module L if flat if it satisfies any

of the following equivalent conditions.

(i.) If 0 → A α−→ B
β−→C → 0 is a short exact sequence of R-modules, then the sequence

0 → L⊗R A
idL⊗Rα−−−−→ L⊗R B

idL⊗Rβ−−−−→ L⊗R C → 0

is exact, i.e., the functor L⊗R − is left-exact on the category of R-modules.

(ii.) If α : A → B is an injective R-module homomorphism, then the induced R-module homomor-

phism idL⊗Rα : L⊗R A → L⊗R B is injective.

(iii.) For any ideal I of R, the map idL⊗Ri : L⊗R I → L that sends ℓ⊗R r 7→ rℓ is injective.

Proof. Conditions (i.) and (ii.) are equivalent by Proposition 2.6. Considering that the inclusion

I ⊆ R of an ideal I of R induces an injective R-module homomorphism, it follows that (ii.) implies

(iii.). We refer the reader to [Rot09, Proposition 3.58] for the proof that (iii.) implies (i.).

Corollary 2.8. Every commutative ring R is flat as a module over itself.

Proof. Consider an injective R-module homomorphism α : A → B. By Proposition 2.2(2.), there

exist R-module isomorphisms ϕ : A → R⊗R A and ψ : B → R⊗R B defined by ϕ(a) = 1R ⊗R a and

ψ(b) = 1R ⊗R b. Observe that ψ ◦α(a) = 1R ⊗R α(a) = (idR⊗Rα)◦ϕ(a) for all elements a ∈ A,

hence ψ ◦α and (idR⊗Rα) ◦ϕ are equal as R-module homomorphisms. Considering that ϕ, ψ,

and α are injective, idR⊗Rα must be injective, from which it follows that R is a flat R-module.

Corollary 2.9. Let R be a commutative ring. A direct sum of R-modules is flat if and only if each

direct summand is flat. Particularly, any free R-module is flat.
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Proof. Let (Li)i∈I be a family of R-modules indexed by some (possibly infinite) set I. Consider

an injective R-module homomorphism α : A → B. For each index i ∈ I, there exists an R-module

homomorphism idLi ⊗Rα : Li⊗R A → Li⊗R B; together, these induce an R-module homomorphism

γ :
⊕

i∈I(Li ⊗R A)→
⊕

i∈I(Li ⊗R B) that acts as idLi ⊗Rα on the ith component of the direct sum.

By Proposition 2.2(3.), there exists R-module isomorphisms ϕ :
⊕

i∈I(Li ⊗R A)→ (
⊕

i∈I Li)⊗R A

and ψ :
⊕

i∈I(Li ⊗R B)→ (
⊕

i∈I Li)⊗R B. Let S =
⊕

i∈I Li. Observe that ψ ◦ γ and (idS⊗Rα) ◦ϕ

are equal on the pure tensors of ⊕i∈I(Li⊗R A), hence they are equal as R-module homomorphisms.

Consequently, S =
⊕

i∈I Li is flat if and only if idS⊗Rα is injective if and only if γ is injective if

and only if idLi ⊗Rα is injective for all indices if and only if each direct summand Li is flat.

Last, a free R-module is flat by Corollary 2.8, as it is a direct sum of copies of R.

Corollary 2.10. Let R be a commutative ring. Every projective R-module is flat.

Proof. By Proposition 1.4(v.), a projective R-module is a direct summand of a free R-module.

Every free R-module is flat; a direct summand of a flat R-module is flat by Corollary 2.9.

Corollary 2.11. Over a local ring, a finitely generated flat module is free.

Proof. Let (R,m) be a local ring. Let L be a finitely generated flat R-module. Consider a sys-

tem of generators x1, . . . ,xn of L whose images in L/mL form an R/m-vector space basis. By

Nakayama’s Lemma, we have that L=R⟨x1, . . . ,xn⟩. Consequently, the canonical R-module homo-

morphism π : Rn → L defined by π(r1, . . . ,rn) = r1x1+ · · ·+rnxn induces a short exact sequence of

R-modules 0 → K i−→ Rn π−→ L → 0, where K = kerπ and i : K → Rn is the inclusion. By Proposition

2.6, there exists an exact sequence of R-modules (R/m)⊗R K → (R/m)⊗R Rn → (R/m)⊗R L → 0.

Combining (2.) and (4.) of Proposition 2.2, we obtain an exact sequence of R/m-vector spaces

K/(mK) → (R/m)n → L/(mL) → 0 (cf. the discussion following Definition 4.9). By hypothe-

sis, the R/m-vector space dimension of L/(mL) is n, so the Rank-Nullity Theorem implies that

K/(mK) = 0 and mK = K. Corollary 4.13 yields kerπ = K = 0 so that L is a free R-module.

Even if the ring is not local, a flat module over a Noetherian ring is projective.
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Proposition 2.12. [Rot09, Corollary 3.57] Over a Noetherian ring, a finitely generated flat module

is projective. Particularly, flatness and projectivity are equivalent.

Generally, the tensor product fails to preserve left-exactness of short exact sequences.

Example 2.13. Let n ≥ 2 be an integer. Let M =Z/nZ be the cyclic group of order n. Observe that

the multiplication map ·n : Z→ Z is injective because Z is a domain; however, the induced map

(Z/nZ)⊗R Z
·n−→ (Z/nZ)⊗R Z is identically zero. Consequently, Z/nZ is not flat as a Z-module.

Like before, we may rigorously define the flat “defect" of an R-module M as follows. Begin

with a projective resolution L• : · · · ℓn+1−−→ Ln
ℓn−→ ·· · ℓ2−→ L1

ℓ1−→ L0
ℓ0−→ N → 0 of some R-module N.

(By Corollary 2.10, this is a flat resolution of N.) Consider the induced chain complex

M⊗R L• : · · ·
ℓ∗n+1−−→ M⊗R Ln

ℓ∗n−→ ·· ·
ℓ∗2−→ M⊗R L1

ℓ∗1−→ M⊗R L0 → 0

with chain maps defined by ℓ∗i = idM ⊗Rℓi for each integer i ≥ 0. We define the ith homology

module TorR
i (M,N) = kerℓ∗i / imgℓ∗i+1 for each integer i ≥ 0; these are independent of the choice

of a projective resolution of N, hence they are well-defined (cf. [Rot09, Corollary 6.21]).

Proposition 2.14. Let M be an R-module. The following properties hold.

(1.) We have that TorR
0 (M,N)∼= M⊗R N for all R-modules N.

(2.) Every short exact sequence of R-modules 0 → N′ → N → N′′ → 0 induces an exact sequence

· · · → TorR
i+1(M,N′′)→ TorR

i (M,N′)→ TorR
i (M,N)→ TorR

i (M,N′′)→ TorR
i−1(M,N′)→ ·· · .

(3.) We have that TorR
i (M,N) = 0 for all integers i ≥ 1 and all R-modules N if and only if M is flat.

Proof. (1.) Given any R-module N, we may consider a flat resolution L• of N that ends with the

terms L1
ℓ1−→ L0

ℓ0−→N → 0. By applying the right-exact covariant functor M⊗R−, we obtain a chain

complex ending in M ⊗R L1
ℓ∗1−→ M ⊗R L0

ℓ∗0−→ 0 with chain maps ℓ∗i = idM ⊗Rℓi. Consequently, we

find that kerℓ∗0 =M⊗R L0 and imgℓ∗1 = img(idM ⊗Rℓ1) =M⊗R (imgℓ1), where the second equality

holds because the pure tensors of M⊗R (imgℓ1) generate img(idM ⊗Rℓ1). Consider the short exact
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sequence of R-modules 0 → imgℓ1
⊆−→ L0 → L0/(imgℓ1)→ 0. By Proposition 2.2 and 2.6, we ob-

tain a sequence of R-modules M⊗R (imgℓ1)→ M⊗R L0 → M⊗R (L0/(imgℓ1))→ 0 that is exact

in the last two places. Considering that the map on the left is the identity on both components, we

conclude that M ⊗R (L0/(imgℓ1)) ∼= (M ⊗R L0)/[M ⊗R (imgℓ1)] by the First Isomorphism Theo-

rem. By definition, we have that TorR
0 (M,N) = kerℓ∗0/ imgℓ∗1 = (M⊗R L0)/[M⊗R (imgℓ1)], hence

our previous computation shows that TorR
0 (M,N)∼= M⊗R (L0/(imgℓ1))∼= M⊗R N, as desired.

(3.) If M is flat, then M ⊗R − is exact by Proposition 2.7, hence for any flat resolution L• of

any R-module N, the chain complex M ⊗R L• is exact. We conclude that TorR
i (M,N) = 0 for all

integers i ≥ 1. Conversely, suppose that TorR
i (M,N) = 0 for all integers i ≥ 1 and all R-modules

N. For any short exact sequence of R-modules 0 → N′ → N → N′′ → 0, there exists a long exact

sequence that begins 0 → M⊗R N′ → M⊗R N → M⊗R N′′ → 0. By Proposition 2.7, M is flat.

We omit the proof of property (2.), but we refer the reader to [Rot09, Corollary 6.30].

One can show that TorR
i (M,−) is a covariant functor from the category of R-modules to itself

that preserves multiplication (cf. [Rot09, Theorem 6.17 and Proposition 6.18]), hence we may

deduce from Proposition 2.14 that the R-modules TorR
i (M,−) measure the flat “defect” of M. By

Proposition 2.2, the R-modules M⊗R N and N ⊗R M are isomorphic for any pair of R-modules M

and N, hence one can establish a similar theory for the covariant functors TorR
i (−,N). Ultimately,

there is an isomorphism of functors Tori
R(M,−) and Tori

R(−,N) for all R-modules M and N, hence

there is no need to make any distinction between the two (cf. [Rot09, Theorem 6.32]).

One of the most important results in homological algebra is the Tensor-Hom Adjunction that

relates the functors Hom and the tensor product. Let R and S be commutative rings. We say that

an abelian group (B,+) is an (R,S)-bimodule if it is an R-module via the action ·, an S-module

via the action ∗, and these actions are “compatible” in the sense that (r · b) ∗ s = r · (b ∗ s) for all

elements r ∈ R, s ∈ S, and b ∈ B. Observe that if A is an R-module and B is an (R,S)-bimodule,

then the tensor product A⊗R B is a R-module via r(a⊗R b) = (ra)⊗R b = a⊗R (rb) and a right

S-module via (a⊗R b)s = a⊗R (bs). One can check that A⊗R B is an (R,S)-bimodule.
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Theorem 2.15 (Tensor-Hom Adjunction). Let R and S be commutative rings. Let A be an R-

module. Let B be an (R,S)-bimodule. Let C be an S-module. There exists a Z-module isomorphism

α : HomS(A⊗R B,C) → HomR(A,HomS(B,C)) defined by α(ϕ)(a) : b 7→ ϕ(a⊗R b) for all ele-

ments a ∈ A and b ∈ B and each S-module homomorphism ϕ : A⊗R B →C.

Proof. Before establishing the claim, we begin with a thorough examination of the objects therein.

Each element of HomS(A⊗R B,C) is an S-module homomorphism ϕ : A⊗R B →C. By definition,

the pure tensors of A⊗R B generate it as an S-module, hence every element of HomS(A⊗R B,C)

is uniquely determined by its image on the pure tensors of A ⊗R B. Likewise, the elements of

HomR(A,HomS(B,C)) are R-module homomorphisms that send an element a ∈ A to an S-module

homomorphism ψa : B → C. Consequently, for each S-module homomorphism ϕ : A⊗R B → C,

the designation of the S-module homomorphism ψϕ,a : B → C onto which ϕ is mapped for each

element a ∈ A induces a function α : HomS(A⊗R B,C)→ HomR(A,HomS(B,C)). Considering that

ϕ and the tensor product are (right) S-linear, the map ψϕ,a : B →C defined by ψϕ,a(b) = ϕ(a⊗R b)

is an S-module homomorphism that satisfies ψϕ,a = α(ϕ)(a) as in the statement of the theorem.

We must prove first that α is Z-linear. Given any S-module homomorphisms ϕ : A⊗R B → C

and γ : A⊗R B →C and any element n ∈ Z, we have that

ψnϕ+γ,a(b) = (nϕ + γ)(a⊗R b) = nϕ(a⊗R b)+ γ(a⊗R b) = (nψϕ,a +ψγ,a)(b)

for all elements a ∈ A and b ∈ B. By our previous identification, we conclude that α is Z-linear.

If ϕ : A⊗R B → C lies in kerα, then ψϕ,a is the zero homomorphism for each element a ∈ A.

Consequently, we find that ϕ(a⊗R b) = ψϕ,a(b) = 0 for all elements a ∈ A and b ∈ B. Considering

that the pure tensors generate A⊗R B, we conclude that ϕ is the zero homomorphism.

Last, suppose that ψ : A → HomR(B,C) is an R-module homomorphism. Let ψa denote the S-

module homomorphism ψ(a) : B →C, as in the opening paragraph of the proof. Consider the map

σ : A×B →C defined by σ(a,b) = ψa(b). By assumption that ψ and its images ψa are all biaddi-

tive, it follows that σ(a+a′,b) = ψa+a′(b) = (ψa+ψa′)(b) = ψa(b)+ψa′(b) = σ(a,b)+σ(a′,b)
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and σ(a,b + b′) = ψa(b + b′) = ψa(b) + ψa(b′) = σ(a,b) + σ(a,b′) for all elements a,a′ ∈ A

and b,b′ ∈ B. We conclude that σ is a biadditive R-module homomorphism, hence the Universal

Property of the Tensor Product guarantees the existence of a biadditive Z-module homomorphism

γ : A⊗R B → C such that γ(a⊗R b) = σ(a,b) = ψa(b) for all elements a ∈ A and b ∈ B. Conse-

quently, we find that ψ is the image of γ under α, hence α is surjective.

3 Existence of Injective Modules

We are now able to return to our discussion of injective modules. We begin with the following.

Theorem 3.1 (Baer’s Criterion). Let R be a commutative unital ring. Let I be a nonzero ideal of

R. An R-module Q is injective if and only if for every R-module homomorphism ϕ : I → Q, there

exists an R-module homomorphism ϕ̃ : R → Q such that ϕ̃(i) = ϕ(i) for each element i ∈ I.

Corollary 3.2. Let Z be the abelian group of integers. Let Q be the abelian group of rational

numbers. The quotient group Q/Z is injective as a Z-module.

Proof. By Baer’s Criterion, it suffices to show that any Z-module homomorphism ϕ : nZ→Q/Z

lifts to a Z-module homomorphism ϕ̃ : Z→Q/Z such that ϕ̃(na) = ϕ(na) for any a ∈Z. Consider

the map ϕ̃ : Z→ Q/Z defined by ϕ̃(a) =
a
n

ϕ(n). By hypothesis that ϕ is a Z-module homomor-

phism, it follows that ϕ̃ is a Z-module homomorphism such that ϕ̃(na) =
na
n

ϕ(n) = ϕ(na).

We prove next that every R-module can be identified with an R-submodule of an injective R-

module; this analogizes the fact that any R-module is the homomorphic image of a free R-module.

Lemma 3.3. Every Z-module embeds in an injective Z-module. Explicitly, for every Z-module M,

there exists an injective Z-module Q and an injective Z-module homomorphism ϕ : M → Q.

Proof. Given any Z-module M, consider its character group M∗ = HomZ(M,Q/Z). We may sub-

sequently define the character group M∗∗ = HomZ(M∗,Q/Z) of M∗ that consists of all Z-module

homomorphisms that send a Z-module homomorphism ϕ : M → Q/Z to an element of Q/Z.
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Consequently, we may define a map ev : M → M∗∗ satisfying ev(m)(ϕ) = ϕ(m). Observe that

ev(am+m′)(ϕ) = ϕ(am+m′) = ϕ(am)+ϕ(m′) = aϕ(m)+ϕ(m′) = aev(m)(ϕ)+ev(m′)(ϕ) for

any integer a, any elements m,m′ ∈ M, and any Z-module homomorphism ϕ : M → Q/Z, hence

ev is a Z-module homomorphism. One can verify that ev(m)(aϕ +ψ) = aev(m)(ϕ)+ ev(m)(ψ)

for any integer a and Z-module homomorphisms ϕ : M → Q/Z and ψ : M → Q/Z, hence ev is

well-defined. Last, we claim that ev is injective. By the contrapositive, it suffices to show that

every nonzero element m ∈ M induces a Z-linear homomorphism ϕ̃ : M → Q/Z for which ϕ̃(m)

is nonzero. By hypothesis that m ∈ M is nonzero, the Z-module C = Z⟨m⟩ is nonzero. If nm = 0

for some integer n ≥ 2, then the assignment m 7→ 1
n
+Q/Z induces a well-defined Z-linear homo-

morphism ϕ : C →Q/Z defined by ϕ(am) =
a
n
+Q/Z. Otherwise, the assignment m 7→ 1

2
+Q/Z

induces a well-defined Z-linear homomorphism ϕ : C → Q/Z defined by ϕ(am) =
a
2
+Q/Z. Ei-

ther way, by the injectivity of Q/Z as a Z-module, the inclusion homomorphism i : C → M can be

extended to a Z-linear map ϕ̃ : M →Q/Z such that ϕ = ϕ̃ ◦ i and ϕ̃(m) = ϕ(m) is nonzero.

Considering that M∗ is a Z-module, there exists a free Z-module F and a surjective Z-module

homomorphism π : F → M, i.e., there exists an exact sequence of Z-modules F π−→ M∗ → 0.

By Proposition 1.6, HomZ(−,Q/Z) induces an exact sequence of Z-modules 0 → M∗∗ π∗
−→ F∗.

Observe that if F =
⊕

ϕ∈M∗Z, then F∗ = HomZ
(⊕

ϕ∈M∗Z,Q/Z
) ∼= ∏ϕ∈M∗(Q/Z). Ultimately,

π∗ ◦ev : M → F∗ is an injective Z-module homomorphism, so our proof is complete in view of the

fact that F∗ is an injective Z-module by Corollary 3.2 and [Rot09, Proposition 3.28(i)].

Lemma 3.4. Let R be a commutative ring. If P is a projective R-module and Q is an injective

Z-module, then PQ = HomZ(P,Q) is an injective R-module.

Proof. We may define an R-module action on PQ via (r ·ϕ)(x) = ϕ(rx) because the identity

[(r+ s) ·ϕ](x) = ϕ((r+ s)x) = ϕ(rx+ sx) = ϕ(rx)+ϕ(sx) = (r ·ϕ + s ·ϕ)(x)

holds for all elements r,s ∈ R and x ∈ P, as ϕ is a group homomorphism. By Proposition 1.6, it

suffices to show that HomR(−,PQ) is right-exact on the category of R-modules. Given any short
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exact sequence of R-modules 0 → A → B →C → 0, we obtain an exact sequence of R-modules

0 → A⊗R P → B⊗R P →C⊗R P → 0

by Propositions 2.2(1.) and 2.10. By applying Proposition 1.6, we find that

0 → HomZ(C⊗R P,Q)→ HomZ(B⊗R P,Q)→ HomZ(A⊗R P,Q)→ 0

is a short exact sequence of Z-modules. Last, the Tensor-Hom Adjunction yields a short exact

sequence 0 → HomR(C,PQ)→ HomR(B,PQ)→ HomR(A,PQ)→ 0 of R-modules, as desired.

Proposition 3.5. Every R-module embeds into an injective R-module.

Proof. Let M be an R-module. By definition, (M,+) is an abelian group, hence it is a Z-module.

By Lemma 3.3, there exists an injective Z-module Q and an injective Z-module homomorphism

ϕ : M → Q. By Proposition 1.3, this induces an injective Z-module homomorphism HomZ(R,ϕ) :

HomZ(R,M) → HomZ(R,Q). Crucially, HomZ(R,Q) is an injective R-module by Lemma 3.4,

hence it suffices to find an injective R-module homomorphism M → HomZ(R,Q).

Consider the map µ : M → HomZ(R,M) defined by µ(m)(r) = rm for all elements r ∈ R.

Observe that µ(m+m′)(r) = r(m+m′) = rm+rm′ = (µ(m)+µ(m′))(r) for all elements r ∈R and

any elements m,m′ ∈ M. We conclude that µ is a Z-module homomorphism. Even more, if µ(m)

is the zero homomorphism, then m = 1Rm = µ(m)(1R) = 0, hence µ is injective. Consequently,

the map HomZ(R,ϕ)◦µ : M → HomZ(R,Q) is an injective Z-module homomorphism.

Given any element r ∈ R, observe that (HomZ(R,ϕ) ◦ µ)(rm) = ϕ ◦ µ(rm) is the Z-module

homomorphism that sends an element s ∈ R to the element ϕ(rsm) of Q. Likewise, the composite

map (HomZ(R,ϕ) ◦ µ)(m) is the Z-module homomorphism that sends an element s ∈ R to the

element ϕ(sm) of Q. By the R-module structure of HomZ(R,Q) defined in Lemma 3.4, it follows

that r[(HomZ(R,ϕ)◦ µ)(m)] and (HomZ(R,ϕ)◦ µ)(rm) are identical on R, hence they are equal.

We conclude that HomZ(R,ϕ)◦µ is an R-module homomorphism, and our proof is complete.
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Ultimately, Proposition 3.5 implies that every R-module N admits an injective resolution, i.e.,

a (right) resolution Q• : 0 → N → Q0 q0

−→ Q1 q1

−→ ·· · qn

−→ Qn+1 qn+1

−−→ ·· · in which Qi is injective for

each integer i ≥ 0. Given an R-module M, consider the cochain complex

HomR(M,Q•) : 0 → HomR(M,Q0)
q0
∗−→ HomR(M,Q1)

q1
∗−→ ·· · qn

∗−→ HomR(M,Qn)
qn+1
∗−−→ ·· ·

with cochain maps defined by qi
∗ = HomR(M,qi) for each integer i ≥ 0. We define the ith coho-

mology module ExtiR(M,N) = kerqi
∗/ imgqi−1

∗ for each integer i ≥ 0. Like before, ExtiR(M,N) is

independent of the choice of an injective resolution of N (cf. [Rot09, Proposition 6.40]).

Proposition 3.6. Let M be an R-module. The following properties hold.

(1.) We have that Ext0R(M,N)∼= HomR(M,N) for all R-modules N.

(2.) Every short exact sequence of R-modules 0 → N′ → N → N′′ → 0 induces an exact sequence

· · · → Exti−1
R (M,N′′)→ ExtiR(M,N′)→ ExtiR(M,N)→ ExtiR(M,N′′)→ Exti+1

R (M,N′)→ ··· .

(3.) We have that ExtiR(M,N) = 0 for all i ≥ 1 and all R-modules N if and only if M is projective.

Proof. We omit the proof, as it is analogous to the proof of Proposition 3.6.

One can show that ExtiR(M,−) is a covariant functor from the category of R-modules to itself

that preserves multiplication (cf. [Rot09, Theorem 6.37 and Proposition 6.38]), hence we may

deduce from Proposition 3.6 that the functors ExtiR(M,−) measure the projective “defect” of M.

Later, in our discussion of canonical modules, we will need the following proposition.

Proposition 3.7. [Rot09, Proposition 7.24] Let R be a commutative ring with R-modules A and C.

If Ext1R(C,A) = 0, then every short exact sequence 0 → A → B →C → 0 splits.

Proof. Consider a short exact sequence 0→A α−→B
β−→C → 0. By applying HomR(C,−), we obtain

a long exact sequence of Ext in which the terms HomR(C,B)
γ−→HomR(C,C)

α∗
−→Ext1R(C,A) appear.

By hypothesis that Ext1R(C,A)= 0, we find that HomR(C,C)= kerα∗= imgγ, hence γ is surjective.
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Particularly, there exists an R-module homomorphism β ′ : C → B such that idC = β ◦β ′. By the

Splitting Lemma, we conclude that the short exact sequence 0 → A α−→ B
β−→C → 0 splits.

If an R-module M admits an injective resolution with finitely many nonzero injective modules,

then its injective dimension is the minimum length of all of such resolutions, i.e.,

injdimR(M) = inf{n | Q• : 0 → M → Q0 → Q1 → ·· · → Qn → 0 is an injective resolution of M}.

Otherwise, we say that M does not have finite injective dimension. Our next proposition describes

the injective dimension of a module in terms of Ext. Before this, we need the following lemma.

Lemma 3.8. Let R be a commutative ring. Let A be an R-module. Let M be an R-module with an

injective resolution Q• : 0 → M
q−1

−−→ Q0 q0

−→ Q1 q1

−→ ·· · . Let Ii = imgqi for each integer i ≥−1. For

all integers n ≥ i+2, there exist R-modules isomorphisms Extn−i
R (A, Ii)∼= Extn−i−1

R (A, Ii+1).

Proof. We will illustrate that Extn+1
R (A,M)∼=ExtnR(A, I0); the remaining isomorphisms follow sim-

ilarly. By hypothesis that Q• is an injective resolution of M, we may obtain an injective resolu-

tion of I0 = imgq0 by taking Q•
0 : 0 → I0

i−→ Q1 q1

−→ Q2 q2

−→ ·· · ; indeed, it suffices to note that

kerq1 = imgq0 = I0 = img i by construction, and the rest of the resolution is exact by assumption.

Consequently, if we relabel the injective modules Qi as X i−1 and the maps qi as χ i−1, we find that

Extn+1
R (A,M) =

kerqn
∗

imgqn+1
∗

=
ker χn−1

∗
img χn

∗
= ExtnR(A, I0).

Because Ext is independent of the choice of injective resolution, the isomorphism holds.

Proposition 3.9. Let R be a commutative ring. The following are equivalent.

(i.) The R-module M has injdimR(M)≤ n.

(ii.) The R-module M satisfies Extn+1
R (A,M) = 0 for all R-modules A.

Proof. If M is an R-module of injective dimension no larger than n, then there exists an injective

resolution Q• : 0 → M → Q0 → Q1 → ·· · → Qn → 0. By Lemma 3.8, for every R-module A,
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we have that Extn+1
R (A,M) ∼= Ext1R(A,Q

n). But Qn is injective, hence the latter Ext vanishes by

Proposition 1.9. Conversely, suppose that Extn+1
R (A,M) = 0 for all R-modules A. Consider an

injective resolution Q• of M. By Lemma 3.8, we have that Extn+1
R (A,M) ∼= Ext1R(A, In), hence by

assumption, we conclude that In is an injective R-module. Consequently, we obtain a finite injective

resolution of M of length n by truncating the injective resolution Q• at In.

Using the tools introduced in the next section, we will determine a pleasant formula the injec-

tive dimension of a module of finite injective dimension. Until then, we note the following.

Proposition 3.10. [BH93, Proposition 3.1.14] Let (R,m,k) be a Noetherian local ring. Let M be

a finitely generated R-module. We have that

injdimR(M) = sup{i ≥ 0 | ExtiR(k,M) ̸= 0}.
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4 Appendix

4.1 Rings, Ideals, and Modules

Unless otherwise stated, we will assume throughout this appendix that R is a commutative unital

ring with additive identity 0R and multiplicative identity 1R. Recall that an ideal I of R is a subgroup

of (R,+) that is closed under multiplication by elements of R, i.e., we have that ri ∈ I for every

element r ∈ R and i ∈ I. We say that a proper ideal P of R is prime if and only if the quotient ring

R/P = {r+P | r ∈ R} is a domain. We say that a proper ideal M of R is maximal if and only if

R/M is a field. By convention and for convenience, we make the following definitions, as well.

Definition 4.1. We denote by Spec(R) the collection of prime ideals of R, i.e.,

Spec(R) = {P ⊆ R | P is a prime ideal of R}.

Occasionally, we will write MaxSpec(R) = {M ⊆ R | M is a maximal ideal of R }. We refer to

Spec(R) as the spectrum of R; likewise, MaxSpec(R) is the maximal spectrum of R. We define

also the Jacobson radical Jac(R) of R as the intersection of all maximal ideals of R.

Example 4.2. Let Z denote the ring of integers. We have that Spec(Z) = {pZ | p is prime}∪{0}

because Z is a Euclidean domain and MaxSpec(Z) = Spec(Z)\{0}.

By the Fundamental Theorem of Arithmetic, every positive integer can be written as a product

of positive powers of distinct primes. Consequently, given any integer n, there exist distinct primes

p1, . . . , pk and positive integers e1, . . . ,ek such that n = ±pe1
1 · · · pek

k . Every ideal of Z is principal,

and we have that aZ⊆ bZ if and only if b | a, hence the ideal nZ induces a chain of ideals beginning

with itself and ending with piZ for some prime pi appearing in the prime factorization of n.

Generally, we use the following definition to describe this property of a ring.

Definition 4.3. We say that R is Noetherian if any of the following equivalent conditions hold.

(i.) Every ascending chain of ideals of R stabilizes. Explicitly, for every sequence of inclusions

of ideals I1 ⊆ I2 ⊆ ·· · , there exists an integer n ≫ 0 such that Ik = In for all integers k ≥ n.
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(ii.) Every nonempty collection of ideals has a maximal element with respect to inclusion.

(iii.) Every ideal I of R is finitely generated. Explicitly, there exist elements x1, . . . ,xn ∈ I such that

for every element x ∈ I, we have that x = r1x1 + · · ·+ rnxn for some elements r1, . . . ,rn ∈ R.

Example 4.4. Let k be a field. Observe that the only ideals of k are {0k} and k: indeed, the ideals

of k (or any commutative unital ring) are in one-to-one correspondence with the kernels of the

unital ring homomorphisms k → S as S ranges over all commutative unital rings. Every nonzero

element of k is a unit, so any unital ring homomorphism ϕ : k → S must be injective or identically

zero, i.e., kerϕ = {0k} or kerϕ = k. Both of these are finitely generated ideals, as k is generated

as an ideal by 1k (as with any ring). Consequently, any field k is Noetherian by Definition 4.3.

One can show that if R is a Noetherian ring, then any polynomial ring over R, any quotient

of R by an ideal, and any finitely generated R-algebra is itself a Noetherian ring. By the previous

example, any polynomial ring or finitely generated algebra over a field is a Noetherian ring. Even

more, Example 4.4 shows that the only maximal ideal of a field is the zero ideal.

Definition 4.5. We say that R is local if R admits a unique maximal ideal m. For emphasis, we

write (R,m,k) to denote the local ring R with unique maximal ideal m and residue field k = R/m.

Proposition 4.6. Let R be a commutative unital ring. The following conditions are equivalent.

(i.) R is local.

(ii.) For every element r ∈ R, either r or 1R + r is a unit.

Particularly, the unique maximal ideal of a local ring R consists of all non-unit elements of R.

Example 4.7. Given a field k and indeterminate x, consider the quotient ring S = k[x]/(x2). We

denote by x̄ the class of x modulo (x2). By the Correspondence Theorem, the ideals of S are in

bijection with the ideals of k[x] that contain (x2) via the map that sends an ideal I of k[x] to the

ideal I/(x2) of S. Considering that k[x] is a principal ideal domain, the ideals of S are (0S), (x̄),

and S, corresponding to the ideals (x2), (x), and k[x], respectively. Of these, (x̄) is maximal by the

Third Isomorphism Theorem. Consequently, (S,m) is a local ring with maximal ideal m= (x̄).
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Using a process analogous to the construction of the rational numbers Q from the integers Z,

one can always obtain a local ring from a given ring. Recall that a set S ⊆ R is multiplicatively

closed if S contains 1R and for any elements s, t ∈ S, we have that st ∈ S. Given any multiplicatively

closed set S ⊆ R, one can construct an equivalence relation on R×S by declaring that (r,s)∼ (r′,s′)

if and only if there exists an element t ∈ S such that t(rs′− r′s) = 0R. One need only check that

if (r,s) ∼ (r′,s′) and (r′,s′) ∼ (r′′,s′′), then (r,s) ∼ (r′′,s′′). But in this case, there exist elements

t, t ′ ∈ S such that t(rs′− r′s) = 0R and t ′(r′s′′− r′′s′) = 0R, hence the product s′tt ′ belongs to S and

satisfies s′tt ′(rs′′− r′′s) = 0R. Like with rational numbers, we denote by r/s the equivalence class

of (r,s) modulo ∼. Consider the set of equivalence classes of (R×S)/∼, denoted by

S−1R =

{
r
s

: r ∈ R, s ∈ S, and
r
s
=

r′

s′
⇐⇒ there exists t ∈ S such that t(rs′− r′s) = 0R

}
.

We refer to S−1R as the localization of R with respect to S. Observe that by definition, if 0R ∈ S,

then S−1R = {0R}. Consequently, we will always assume that 0R /∈ S.

Proposition 4.8. Let R be a commutative unital ring with a multiplicatively closed subset S.

(1.) S−1R is a commutative unital ring with respect to
r
s
+

r′

s′
=

rs′+ r′s
ss′

and
r
s
· r′

s′
=

rr′

ss′
.

(2.) There is a canonical ring homomorphism λ : R → S−1R defined by λ (r) =
r

1R
.

(3.) For any ideal I of R, we have that IS−1R = λ (I) =
{

i
s

: i ∈ I and s ∈ S
}
.

(4.) For any ideal I of S−1R, we have that λ−1(I)S−1R = λ (λ−1(I)) = I.

(5.) The canonical ring homomorphism λ : R → S−1R induces a one-to-one correspondence be-

tween Spec(S−1R) and the prime ideals of R such that P∩S = /0.

{P ∈ Spec(R) | P∩S = /0}↔ Spec(S−1R), P 7→ λ (P) = PS−1R

(6.) (Existence of Local Maximal Ideals) If I is an ideal of R such that I ∩S = /0, then there exists
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a prime ideal P of R such that P∩S = /0 and S−1P is a maximal ideal of S−1R. Particularly,

the prime ideal P is the largest (with respect to inclusion) ideal of R that is disjoint from S.

(7.) If P is a prime ideal of R, then W = R\P is a multiplicatively closed set. Further, the local-

ization RP =W−1R is a local ring with unique maximal ideal PRP.

Proof. We omit the proofs of properties (1.), (2.), (3.), and (4.), as they are routine to check.

(5.) We establish first that the map is well-defined, i.e., we show that if P is a prime ideal

of R such that P∩ S = /0, then the ideal λ (P) = PS−1R of S−1R is prime. Given any elements

a/s, b/t ∈ S−1R such that (a/s)(b/t) ∈ λ (P), we claim that either a/s ∈ λ (P) or b/t ∈ λ (P). By

definition, we have that (a/s)(b/t)= ab/st belongs to λ (P) if and only if there exist some elements

c ∈ P and u,v ∈ S such that v(abu− stc) = 0R or vabu = vstc. By hypothesis that c belongs to P,

we conclude that vabu belongs to P. Considering that P is a prime ideal of R, one of the elements

a,b,u, or v must belong to P. By construction, neither u nor v belongs to P, so either a or b belong

to P. Consequently, either a/s or b/t belong to λ (P), and we conclude that λ (P) is prime.

Our previous paragraph establishes that the map is well-defined. We proceed to show that it

has a well-defined inverse. Consider the map P 7→ λ−1(P). If PS−1R is a prime ideal of S−1R, then

its contraction λ−1(P) is a prime ideal of R. Further, every element of S is mapped onto a unit by

λ , hence if λ−1(P)∩ S were nonempty, then P = λ (λ−1(P)) would be the entire ring S−1R — a

contradiction. We conclude that the map P 7→ λ−1(P) is well-defined. By property (2.) above,

we have that λ (λ−1(P)) = P for all prime ideals P of S−1R, hence the map P 7→ λ−1(P) has a

left-inverse. On the other hand, we claim that λ−1(λ (P)) = P so that the map P 7→ λ−1(P) has a

right-inverse. Clearly, it is always the case that P ⊆ λ−1(λ (P)). Conversely, let x be an element of

λ−1(λ (P)). By definition, we have that λ (x) belongs to λ (P), hence there exist elements s, t ∈ S

and p ∈ P such that t(xs− p) = 0R. But this implies that txs belongs to the prime ideal P so that x

belongs to P by assumption that s, t ∈ S and P∩S = /0. We conclude that λ−1(λ (P)) = P.

(6.) Observe that the collection D = {I ⊆ R | I is an ideal of R and I ∩ S = /0} is partially or-

dered by inclusion. Further, it is nonempty because it contains the zero ideal of R. Given any chain

I1 ⊆ I2 ⊆ I3 ⊆ ·· · of ideals in D , the union ∪∞
n=1In is an ideal of R that is disjoint from S. Conse-
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quently, every chain in D has an upper bound in D , hence D has a maximal element P by Zorn’s

Lemma. We claim that P is a prime ideal of R. Consider some elements a,b ∈ R such that ab ∈ P.

On the contrary, if neither a ∈ P nor b ∈ P, then we would have that P ⊊ aR+P and P ⊊ bR+P.

By the maximality of P, there would exist elements s ∈ (aR+P)∩S and t ∈ (bR+P)∩S. Observe

that (aR+P)(bR+P)⊆ P so that st ∈ (aR+P)(bR+P) belongs to P — a contradiction.

(7.) By definition, a prime ideal P of R is a proper ideal such that ab ∈ P implies that a ∈ P or

b ∈ P. Equivalently, if neither a ∈ P nor b ∈ P, then ab ∈ R \P, i.e., W = R \P is multiplicatively

closed. By properties (1.) and (5.), Spec(RP) is in bijection with {Q ∈ Spec(R) | Q∩W = /0} =

{Q∈ Spec(R) |Q⊆P}. We conclude that PRP is the unique maximal ideal of the local ring RP.

By definition, the zero ideal of a domain D is prime. Consequently, we may construct the local

ring Frac(D) = W−1R for the multiplicatively closed set W = D \ {0D}. Observe that Frac(D) is

the field of fractions of D: every nonzero element d/w of Frac(D) has multiplicative inverse w/d.

Particularly, we have that Frac(Z) =Q. Generally, the set S of non-zero divisors of a commutative

unital ring is multiplicatively closed; the ring Q(R) = S−1R is the total ring of fractions of R.

Other than the ideals of a commutative unital ring, the following definition introduces algebraic

structures associated to R by which one may understand the properties of R.

Definition 4.9. We say that an abelian group (M,+) is an R-module if there is a map · : R×M →M

that sends (r,m) 7→ r ·m such that for all elements r,s ∈ R and m,n ∈ M, we have that

(i.) r · (m+n) = r ·m+ r ·n,

(ii.) (r+ s) ·m = r ·m+ s ·m,

(iii.) r · (s ·m) = (rs) ·m, and

(iv.) 1R ·m = m.

Clearly, R is an R-module via its own multiplication. We will reserve the notation 0 for the zero

element of M. Often, it will be convenient to write r ·m as rm with the understanding that r is an

element of R that is acting on the element m of the R-module M via the specified action.
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Like with any algebraic structure, the substructures of a module are of central importance to

its study. If M is an R-module, then N ⊆ M is an R-submodule if N is closed under addition and

R-scalar multiplication and 0 ∈ N. By definition, the R-submodules of R are precisely its ideals.

If M and N are any R-modules, then an R-module homomorphism ϕ : M → N is a function

such that ϕ(m+m′) = ϕ(m)+ϕ(m′) and ϕ(rm) = rϕ(m) for all elements m,m′ ∈ M and r ∈ R.

Equivalently, one could say that an R-module homomorphism is an R-linear transformation.

Crucially, if M is an R-module and I is an ideal of M such that IM = 0, then M can be viewed

as an R/I-module via the action (r+ I) ·m = rm. Explicitly, if r+ I = s+ I, then r− s belongs to

I so that rm− sm = (r− s)m = 0. But this implies that (r+ I) ·m = rm = sm = (s+ I) ·m, and the

action is well-defined. Particularly, if m is a maximal ideal of R, then R/m is a field. Further, if

mM = 0, then M is an R/m-vector space, and it admits a basis. We will return to this idea soon.

We say that an R-module M is finitely generated if there exist elements x1, . . . ,xn ∈ M such

that for every element x ∈ M, there exist elements r1, . . . ,rn ∈ R such that x = r1x1 + · · ·+ rnxn.

Put another way, the elements x1, . . . ,xn ∈ M generate M as an R-module if M = R⟨x1, . . . ,xn⟩. We

state a fundamental result relating the finitely generated R-modules and prime ideals of R.

Lemma 4.10 (Prime Avoidance Lemma). [BH93, Lemma 1.2.2] Let R be a commutative unital

ring with prime ideals P1, . . . ,Pn. Let M be an R-module with x1, . . . ,xn ∈ M. Let N = R⟨x1, . . . ,xn⟩.

If NPi ̸⊆ PiMPi for any integer 1 ≤ i ≤ n, then there exists an element x ∈ N such that x /∈ PiMPi for

any integer 1 ≤ i ≤ n. Particularly, if I is a finitely generated ideal of R such that I ̸⊆ Pi for any

integer 1 ≤ i ≤ n, then there exists an element r ∈ I such that r /∈ Pi for any integer 1 ≤ i ≤ n.

One of the most valuable results on finitely generated modules is the Cayley-Hamilton Theo-

rem; the reader might be familiar with its use in linear algebra, but we state it in generality.

Theorem 4.11 (Cayley-Hamilton Theorem). Let R be a commutative unital ring. Let M be a

finitely generated R-module. For any ideal I and any R-module homomorphism ϕ : M → M such

that ϕ(M) ⊆ IM, there exists a monic polynomial tn + i1tn−1 + · · ·+ in−1t + in with i1, . . . , in ∈ I

such that ϕn + i1ϕn−1 + · · ·+ in−1ϕ + in idM is the zero homomorphism on M.
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Proof. Let x1, . . . ,xn be a system of R-module generators of M. By hypothesis that ϕ(M) ⊆ IM,

we may view M as an R[t]-module via the action t · x = ϕ(x). Considering that M = R⟨x1, . . . ,xn⟩

and ϕ(M) ⊆ IM by assumption, for each integer 1 ≤ j ≤ n, there exist elements i j,1, . . . , i j,n ∈ I

such that t ·x j = ϕ(x j) = ∑
n
k=1 i j,kxk or ∑

n
k=1(δ j,kt− i j,k)xk = 0R, where δ j,k is the Kronecker delta.

Consider the matrix A whose jth row and kth column is δ j,ks− i j,k. Observe that the previous

identity shows that Ax = 0 for the column vector x = ⟨x1, . . . ,xn⟩t . Using the fact that adj(A)A is

det(A) times the n× n identity matrix, we conclude that det(A)x = 0. Consequently, det(A) is a

monic polynomial in t with coefficients in I that acts as the zero homomorphism on M.

Every finitely generated module over a local ring (R,m) admits a unique number of minimal

generators by Nakayama’s Lemma. Considering its importance and ubiquity, we record it below.

Lemma 4.12 (Nakayama’s Lemma). Let (R,m,k) be a local ring with unique maximal ideal m

and residue field k. Let M be a finitely generated R-module. If the images of x1, . . . ,xn modulo mM

form a basis of the k-vector space M/mM, then M = R⟨x1, . . . ,xn⟩.

One common variation of Nakayama’s Lemma is presented in the following corollary. We omit

the proof of the necessity of Nakayama’s Lemma, but we do establish its sufficiency.

Corollary 4.13. Let (R,m,k) be a local ring. Let M be a finitely generated R-module. If I is a

proper ideal of R and N is an R-submodule of M such that M = IM+N, then M = N.

Proof. Let x1, . . . ,xn denote a system of generators of M such that x1 +mM, . . . ,xn +mM forms a

basis for the k-vector space M/mM. By hypothesis that M = IM +N, for each integer 1 ≤ i ≤ n,

there exist elements ri,1, . . . ,ri,n ∈ I and yi ∈ N such that xi = yi +∑
n
j=1 ri, jx j. Consequently, we

have that xi+mM = yi+mM so that y1+mM, . . . ,yn+mM forms a basis of M/mM. We conclude

by Nakayama’s Lemma that M = R⟨y1, . . . ,yn⟩ so that M = N, as desired.

We denote by µ(M) = dimk(M/mM) the unique number of minimal generators of M, as guar-

anteed by Nakayama’s Lemma. Our next definition generalizes Definition 4.3.

Definition 4.14. We say that M is Noetherian if any of the following equivalent conditions hold.
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(i.) Every ascending chain of R-submodules of M stabilizes.

(ii.) Every nonempty collection of R-submodules of M has a maximal element under inclusion.

(iii.) Every R-submodule of M is finitely generated.

If R is Noetherian, then the following condition is equivalent to the above conditions.

(iv.) The R-module M is finitely generated.

We describe two paramount results on Noetherian modules over Noetherian rings.

Lemma 4.15 (Artin-Rees Lemma). Let R be Noetherian. For any ideal I and finitely generated

R-modules N ⊆ M, there exists an integer k ≥ 1 such that InM∩N = In−k(IkM∩N) for all n ≥ k.

Theorem 4.16 (Krull’s Intersection Theorem). Let R be a Noetherian ring. For any proper ideal I

of R and any finitely generated R-module M, we have that
⋂

n≥0 InM = I
(⋂

n≥0 InM
)
. Even more,

there exists an element x ∈ I such that (1R − x)
⋂

n≥0 InM = 0. If R is local, then
⋂

n≥0 InM = 0.

Proof. Observe that N =
⋂

n≥0 InM is a finitely generated R-submodule of M and N = InM∩N for

all integers n ≥ 0. By the Artin-Rees Lemma, there exists an integer k ≥ 1 such that

N = InM∩N = In−k(IkM∩N) = In−kN

for all integers n ≥ k. We conclude that N = IN, i.e., we have that idN(N) ⊆ IN. By the Cayley-

Hamilton Theorem, there exists a monic polynomial tn+ i1tn−1+ · · ·+ in−1t + in with i1, . . . , in ∈ I

such that (1R+ i1+ · · ·+ in−1+ in) idN is the zero endomorphism on N. Consequently, we find that

(1R + i1 + · · ·+ in−1 + in)N = 0 so that (1R − x)N = 0 with x =−(i1 + · · ·+ in−1 + in) ∈ I.

Last, if R is local, then we conclude that
⋂

n≥0 InM = N = 0 by Corollary 4.13.

We refer to a chain of R-modules 0 ⊊ M1 ⊊ · · · ⊆ Mn−1 ⊊ M as a composition series of M if

there does not exist an R-submodule N of M such that Mi ⊊ N ⊊ Mi+1 for any integer 0 ≤ i ≤ n−1.
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Put another way, a composition series of M is a maximal ascending chain of R-submodules of M

beginning with 0 and ending with M. One of the most important invariants of M is its length

ℓR(M) = inf{n ≥ 0 | M admits a composition series 0 ⊊ M1 ⊊ · · ·⊊ Mn−1 ⊊ M}.

If R is a field and M is an R-module, then M is an R-vector space, and its length coincides with its

R-vector space dimension. Consequently, length is a generalization of vector space dimension to

modules over commutative unital rings other than fields. Considering that finite-dimensional vector

spaces exhibit pleasant properties, we are motivated to investigate length of general modules.

Definition 4.17. We say that M is Artinian if any of the following equivalent conditions hold.

(i.) Every descending chain of R-submodules of M stabilizes.

(ii.) Every nonempty collection of R-submodules of M has a minimal element under inclusion.

Proposition 4.18. Let R be a commutative unital ring. The following are equivalent.

(i.) An R-module M is Noetherian and Artinian.

(ii.) An R-module M has finite length over R.

Proof. Clearly, the claim holds if M = 0. We will assume henceforth that M is a nonzero R-module.

(i.) If M is both Noetherian and Artinian, then we may construct a composition series of M as

follows. By assumption that M is nonzero, there exists an R-submodule of M that strictly contains

0. By Definition 4.17, we may find a nonzero R-submodule M1 of M that is minimal with respect

to inclusion among all R-submodules of M that strictly contain 0. If M1 = M, then we are done;

otherwise, we may find a nonzero R-submodule M2 of M that is minimal with respect to inclusion

among all R-submodules of M that strictly contain M1. Continuing in this manner yields a strictly

ascending chain of R-submodules 0 ⊊ M1 ⊊ M2 ⊊ · · · . By hypothesis that M is Noetherian, this

must be finite, hence we obtain a chain of R-submodules 0 ⊊ M1 ⊊ M2 ⊊ · · ·⊊ Mn−1 ⊊ M of M; it

is by construction a composition series of M, hence we conclude that ℓR(M)≤ n.
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(ii.) Conversely, suppose that M has finite length n over R. We claim that every descending

chain of R-submodules of M stabilizes. On the contrary, suppose that there exists an infinite de-

scending chain M1 ⊋ M2 ⊋ · · · of R-submodules of M. Observe that the first n+ 2 terms of this

chain yield a chain Mn+2 ⊊ Mn+1 ⊊ · · · ⊊ M2 ⊊ M1. By hypothesis, Mn+2 is nonzero, hence we

may append M and the zero module to obtain a chain 0 ⊊ Mn+2 ⊊ Mn+1 ⊊ · · · ⊊ M2 ⊊ M1 ⊆ M

of length at least n+ 1. Because we can refine this chain to a composition series of M of length

larger than ℓR(M) = n, we have reached a contradiction. Likewise, there cannot exist an infinite

ascending chain of R-submodules of M. We conclude that M is Noetherian and Artinian.

Corollary 4.19. If M has finite length as an R-module, then M is finitely generated over R.

Length is an especially important invariant over local rings. Our next proposition gives a useful

equivalent condition for a module over a local ring to have finite length.

Proposition 4.20. Let (R,m,k) be a local ring. The following are equivalent.

(i.) A R-module M is Noetherian and admits an integer n ≥ 0 such that mnM = 0.

(ii.) An R-module M has finite length over R.

Proof. (i.) By definition of length, it suffices to exhibit a finite composition series of M. By

assumption that mnM = 0 for some integer n ≥ 0, there exists a chain of R-submodules

0 =mnM ⊊mn−1M ⊊ · · ·⊊mM ⊊ M.

(We may assume without loss of generality that mn−1M is nonzero.) Observe that for each integer

0≤ i≤ n−1, we have that Mi =miM/mi+1M is a quotient of the Noetherian R-module miM, hence

it is finitely generated. Each module Mi satisfies mMi = 0, hence we may view each Mi as a k-

vector space. By our exposition preceding Definition 4.17, the length of each finite-dimensional k-

vector space Mi is finite, hence each Mi admits a finite composition series. By the Correspondence

Theorem, a finite composition series of Mi induces a strict chain of R-submodules of M beginning
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with mi+1M and ending with miM such that each successive containment is minimal. Combining

each chain successively from i = n−1 to i = 0 yields a composition series for M.

(ii.) By Proposition 4.18, if M has finite length over R, then M is a Noetherian R-module. On the

contrary, assume that mnM is nonzero for each integer n ≥ 0. By definition, for each integer n ≥ 0,

there exist elements r1, . . . ,rn ∈m and m∈M such that r1 · · ·rnm is nonzero. Consider the sequence

of R-modules 0⊆R(r1 · · ·rnm)⊆ ·· ·⊆R(r1m)⊆Rm⊆M. We claim that each containment is strict;

otherwise, there would exist an integer 0 ≤ k ≤ n− 1 and an element s ∈ R such that r1 · · ·rkm =

sr1 · · ·rk+1m. By rearranging, we would obtain (1R − srk+1)r1 · · ·rkm = 0. By Proposition 4.6, we

would find that 1R− srk+1 is a unit so that r1 · · ·rkm = 0 — a contradiction. Consequently, for each

integer n ≥ 0, we have constructed a composition series of M of length n+1. But this is impossible

by assumption that M has finite length over R.

Corollary 4.21. Let (R,m,k) be a local ring. If R is Artinian as an R-module, then R has finite

length as an R-module. Particularly, every Artinian local ring is Noetherian.

Proof. By hypothesis that R is Artinian, the descending chain of ideals m ⊋ m2 ⊋ · · · stabilizes,

hence we must have that mn = 0 for some integer n ≥ 0. By the proof of Proposition 4.20, there

exist k-vector spaces Vi = mi/mi+1 for each integer 0 ≤ i ≤ n− 1. Every descending chain of k-

vector subspaces of Vi corresponds to a descending chain of ideals of R. By hypothesis that R is

Artinian, the k-vector spaces Vi must be finitely generated so that R admits a composition series of

finite length as in the proof of Proposition 4.20. Last, R is Noetherian by Proposition 4.18.

By the proof of Proposition 4.20, we obtain the following important and useful fact.

Proposition 4.22. Let R be a commutative unital ring. Let M be an R-module such that IM = 0

for some ideal I of R. We have that ℓR(M) is finite if and only if ℓR/I(M) is finite.

Proof. If IM = 0, then M is an R/I-module via the action (r+ I) ·M = rm. Consequently, a com-

position series holds for M as an R-module if and only if it holds for M as an R/I-module.

We define the colength of an R-submodule N of an R-module M to be the length of the quotient

module M/N, i.e., the colength of N in M is ℓR(M/N). If I is an ideal of R with finite colength,
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then R/I is Artinian and Noetherian by Proposition 4.18. Conversely, if R is Noetherian and R/I is

Artinian, then R/I is Noetherian and Artinian, hence I has finite colength.

We say that an ideal I of R is P-primary for a prime ideal P of R if P =
√

I. Observe that

if Pn ⊆ I ⊆ P for some integer n ≫ 0, then P =
√

I so that I is P-primary. We establish next a

necessary and sufficient condition for ideals of finite colength in a Noetherian local ring.

Proposition 4.23. Let (R,m) be a local ring. Let I be an ideal of R. If I has finite colength, then I

is m-primary. Conversely, if R is Noetherian and I is m-primary, then I has finite colength.

Proof. By definition, if I has finite colength, then R/I has finite length as an R-module. By Proposi-

tion 4.20, we have that mn(R/I) = 0 for some integer n ≫ 0 so that mn ⊆ I ⊆m and I is m-primary.

Conversely, if I is m-primary, then m=
√

I. By hypothesis that R is Noetherian, this is equivalent

to the condition that mn ⊆ I ⊆m for some integer n ≫ 0, from which it follows that mn(R/I) = 0.

Even more, we have that dim(R/I) = 0 so that R/I is Artinian, from which it follows that R/I has

finite length as an R-module, i.e., I has finite colength.

4.2 Localization as a Functor

Let S be a multiplicatively closed subset of a commutative ring R. Our aim in this section is to

illustrate that localization of an R-module with respect to S is an exact functor. Localization of a

commutative ring at a prime ideal yields a commutative local ring, hence this fact reduces many

questions to the local case. Given an R-module M, we may construct its localization at S in the

same manner as in the section on Rings, Ideals, and Modules. Consider the equivalence relation

on M×S induced by declaring that (m,s)∼ (m′,s′) if and only if there exists an element t ∈ S such

that t(s′m− sm′) = 0; then, the localization of M with respect to S is

S−1M =

{
m
s

: m ∈ M,s ∈ S, and
m
s
=

m′

s′
⇐⇒ there exists t ∈ S such that t(s′m− sm′) = 0

}
.

Proposition 4.24. Let S be a multiplicatively closed subset of a commutative ring R. Let M be an

R-module. The localization of M with respect to S is an S−1R-module via the action r
u ·

m
v = rm

uv .
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Proof. We illustrate first that this action is well-defined. By definition, if r
u = s

v in S−1R, then

there exists an element t ∈ S such that rtv = stu. Given any element m
w of S−1M, we have that

rtvwm = stuwm so that r
u ·

m
w = rm

uw = sm
vw = s

v ·
m
w . We must now verify that the action satisfies

the distributive laws; the other two properties hold by definition. Observe that for any elements

r1,r2 ∈ R, u1,u2,v ∈ S, and m ∈ M, we have that

(
r1

u1
+

r2

u2

)
· m

v
=

r1u2 + r2u1

u1u2
· m

v
=

r1u2m+ r2u1m
u1u2v

=
r1u2m
u1u2v

+
r2u1m
u1u2v

=
r1

u1
· m

v
+

r2

u2
· m

v
.

We note that a similar analysis shows that multiplication distributes over addition in S−1M.

Consequently, localization with respect to S converts an R-module into an S−1R-module. Given

any R-module homomorphism ϕ : M → N, consider the map S−1ϕ : S−1M → S−1N defined by

S−1ϕ
(m

s

)
= ϕ(m)

s . Observe that for any elements r ∈ R, u,v,w ∈ S, and m,n ∈ M, we have that

S−1
ϕ

( r
u
· m

v
+

n
w

)
= ϕ

(
rwm+uvn

uvw

)
=

ϕ(rwm+uvn)
uvw

=
rwϕ(m)+uvϕ(n)

uvw
=

r
u
· ϕ(m)

v
+

ϕ(n)
w

,

hence the induced map S−1ϕ is an S−1R-module homomorphism. Considering that S−1M is an

R-module with respect to the action r · m
s = rm

s , the map S−1ϕ is also an R-module homomorphism.

Proposition 4.25. Let S be a multiplicatively closed subset of a commutative ring R. Let R be the

category of R-modules. The map S−1(−) that sends an R-module M to S−1M (viewed as either an

R-module or an S−1R-module) and sends an R-module homomorphism ϕ : M → N to the module

homomorphism S−1ϕ : S−1M → S−1N is a covariant functor that preserves bijections.

Proof. Clearly, the induced map S−1 idM is the identity on S−1M. Given any R-module homomor-

phisms ϕ : A→B and ψ : B→C, it is straightforward to verify that S−1(ψ ◦ϕ) = S−1ψ ◦S−1ϕ. We

conclude that S−1(−) is a functor. Consider a bijective R-module homomorphism γ : M → N. If m
s

lies in the kernel of S−1γ, then there exists an element t ∈ S such that γ(tm) = tγ(m) = 0. By hy-

pothesis that γ is injective, we conclude that tm = 0, from which it follows that m
s = 0. On the other

hand, for any element n
s of S−1M, there exists an element m ∈ M such that n

s = γ(m)
s = S−1γ

(m
s

)
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by assumption that γ is surjective. We conclude that S−1γ is a bijection.

Corollary 4.26. Let S be a multiplicatively closed subset of a commutative ring R. If there is a

short exact sequence of R-modules 0 → A α−→ B
β−→ C → 0, then there is an induced short exact

sequence 0 → S−1A S−1α−−−→ S−1B
S−1β−−−→ S−1C → 0 (of either R-modules or S−1R-modules).

Proof. By Proposition 4.25, we have that S−1α is injective and S−1β is surjective, so it suffices to

check the exactness of the sequence at S−1B. Considering that S−1β ◦S−1α = S−1(β ◦α) = 0, we

have that img(S−1α)⊆ ker(S−1β ). If b
s lies in the kernel of S−1β , then there exists an element t ∈ S

such that β (tb) = tβ (b) = 0. Consequently, we may find an element a ∈ A such that α(a) = tb and

1R(sα(a)− stb) = 0. We conclude that b
s =

α(a)
st = S−1α

( a
st

)
and ker(S−1β )⊆ img(S−1α).

Observe that if M is an R-module, then S−1R⊗R M is an R-module. On the other hand, we

may view S−1R⊗R M as an S−1R-module via the action a
b ·
( r

s ⊗R m
)
= ar

bs ⊗R m by the proof of

Proposition 4.25. Consider the map ϕ : S−1R×M → S−1M defined by ϕ
( r

s ,m
)
= rm

s . Observe that

ϕ is multiplication in the second coordinate, hence it is R-linear in the second coordinate. On the

other hand, for any elements a,r,s ∈ R, u,v ∈ S, and m ∈ M, we have that

ϕ

(
a · r

u
+

s
v
,m
)
= ϕ

(
arv+ su

uv
,m
)
=

(arv+ su)m
uv

=
arvm

uv
+

sum
uv

= a ·ϕ
( r

u
,m
)
+ϕ

( s
v
,m
)
,

hence ϕ is R-linear in the first coordinate. We conclude that ϕ is a bilinear R-module homo-

morphism. By the Universal Property of the Tensor Product, there exists a bilinear R-module

homomorphism γ : S−1R⊗R M → S−1M that satisfies γ
( r

s ⊗R m
)
= rm

s . We exhibit an R-module

homomorphism ψ : S−1M → S−1R⊗R M such that γ ◦ψ and ψ ◦γ are the identity homomorphisms.

Given any element m
s ∈ S−1M, let ψ

(m
s

)
= 1R

s ⊗R m. Observe that if m
s = m′

s′ , then there exists an

element t ∈ S such that s′tm = stm′. Consequently, we have that

1R

s
⊗R m =

s′t
ss′t

⊗R m =
1R

ss′t
⊗R (s′tm) =

1R

ss′t
⊗R (stm′) =

st
ss′t

⊗R m′ =
1R

s′
⊗R m′,

hence ψ is well-defined. By definition of the tensor product, ψ is R-linear, hence it is an R-module
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homomorphism. Clearly, we have that γ ◦ψ is the identity of S−1M. Conversely, we have that ψ ◦γ

is the identity on the pure tensors of S−1R⊗R M, hence it is the identity on S−1R⊗R M. One can

easily verify that both γ and ψ are S−1R-module homomorphisms, hence we obtain the following.

Proposition 4.27. Let S be a multiplicatively closed subset of a commutative ring R. Let M be an

R-module. We have that S−1M ∼= S−1R⊗R M as an R-module and as an S−1R-module.

Corollary 4.28. Let S be a multiplicatively closed subset of a commutative ring R. The R-module

S−1R is flat, i.e., the tensor product S−1R⊗R − preserves exact sequences.

Proof. This follows as a direct consequence of Propositions 4.26 and 4.27.

Corollary 4.29. Let S be a multiplicatively closed subset of a commutative ring R. Localization

commutes with direct sums, i.e., for any (possibly infinite) index set I and any family of R-modules

(Mi)i∈I, we have that S−1(
⊕

i∈I Mi)∼=
⊕

i∈I(S
−1Mi).

Proof. By Proposition 4.27, we have that S−1Mi ∼= S−1R⊗R Mi for each index i. Consequently, the

desired result follows immediately from Proposition 2.2.

Our next proposition lists many of the desirable properties of localization.

Corollary 4.30. Let S be a multiplicatively closed subset of a commutative ring R. Let N ⊆ M be

R-modules. The following properties hold.

(1.) Localization commutes with quotients, i.e., S−1(M/N)∼= (S−1M)/(S−1N).

(2.) Localization preserves the property of being finitely generated.

(3.) Localization preserves the property of being Noetherian.

(4.) Localization preserves the property of being free (or projective).

(5.) Localization preserves integral extensions.

(6.) Localization commutes with the integral closure, i.e., S−1R = S−1R.
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(7.) Localization preserves reducedness.

Proof. (1.) Use Corollary 4.26 on the short exact sequence 0 → N → M → M/N → 0; then, apply

the First Isomorphism Theorem to obtain the desired result.

(2.) Consider a finitely generated R-module M = R⟨x1, . . . ,xn⟩. Every element m ∈ M can be

written as m = r1x1 + · · ·+ rnxn for some elements r1, . . . ,rn ∈ R. Consequently, every element

m
s ∈ S−1M can be written as m

s = r1
s

x1
1R

+ · · ·+ rn
s

xn
1R

so that S−1M = S−1R
〈

x1
1R
, . . . , xn

1R

〉
.

(3.) If M is Noetherian, then every R-submodule of M is finitely generated. One can verify that

every S−1R-submodule of S−1M is of the form S−1N for some R-submodule N of M. By part (2.)

above, every S−1R-submodule of S−1M is finitely generated, hence S−1M is Noetherian.

(4.) If F is a free R-module, then it is a direct sum of copies of R, hence S−1F is a direct sum

of copies of S−1R by Proposition 4.29. Likewise, if P is a projective R-module, then it is a direct

summand of a free R-module, and S−1P is a direct summand of a free S−1R-module.

(5.) Let R ⊆ T be an integral extension. By Corollary 4.26, the inclusion S−1R ⊆ S−1T is a

ring extension. Given any element x
s of S−1T, there exist elements a1, . . . ,an−1,an ∈ R such that

xn +a1xn−1 + · · ·+an−1x+an = 0R.

By assumption that S is multiplicatively closed, the elements s, . . . ,sn−1,sn belong to S, hence

(x
s

)n
+

a1

s

(x
s

)n−1
+ · · ·+ an−1

sn−1

(x
s

)
+

an

sn =
0R

sn

demonstrates that x
s is integral over S−1R. We conclude that S−1T is integral over S−1R.

(6.) By part (4.) above, we find that S−1R ⊆ S−1R. Conversely, consider an equation

(x
u

)n
+

a1

v1

(x
u

)n−1
+ · · ·+ an−1

vn−1

(x
u

)
+

an

vn
= 0

of integral dependence over S−1R. Observe that if d = uv1 · · ·vn−1vn, then by multiplying the pre-
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vious displayed equation by dn/1R and setting ci = ai(uv1 · · ·vn−1vn)
i/vi, we find that

(v1 · · ·vn−1vnx)n + c1(v1 · · ·vn−1vnx)n−1 + · · ·+ cn−1(v1 · · ·vn−1vnx)+ cn

1R
= 0.

Consequently, there exists an element t ∈ S such that t annihilates the element of R in the numerator.

By multiplying this element by tn, we obtain an expression of integral dependence

(tv1 · · ·vn−1vnx)n + tc1(tv1 · · ·vn−1vnx)n−1 + · · ·+ tn−1cn−1(tv1 · · ·vn−1vnx)+ tncn = 0R.

We conclude that tv1 · · ·vn−1vnx belongs to R. Considering that each of the elements t,v1, . . . ,vn−1

lies in S, the element x
u = tv1···vn−1vnx

tv1···vn−1vnu belongs to S−1R and S−1R ⊆ S−1R.

(7.) We prove the contrapositive, i.e., we show that if S−1R is not reduced, then R is not

reduced. Consider a nonzero nilpotent element r
s ∈ S−1R such that rn

sn =
( r

s

)n
= 0. By definition of

S−1R, there exists a nonzero element t ∈ S such that rnt = 0R and (rt)n = 0R, hence the element

rt ∈ R is nilpotent; it must be nonzero because r
s is nonzero by assumption.

Localization admits even more useful properties that we omit for the sake of brevity. We direct

the reader to the end of [Rot09, Section 4.7] for further information (cf. pages 198 to 202).

4.3 Further Properties of Hom and Ext

We begin with the observation that Hom commutes with direct products.

Proposition 4.31. Let R be a commutative ring. For any (possibly infinite) index set I and any

families of R-modules (Mi)i∈I and (Ni)i∈I, we have that HomR (
⊕

i∈I Mi,N) ∼= ∏i∈I HomR(Mi,N)

and HomR (M,∏i∈I Ni)∼= ∏i∈I HomR(M,Ni). Particularly, it holds that HomR(Rn,N)∼= Nn.

Proof. Let σi : Mi →
⊕

i∈I Mi denote the ith component inclusion map, i.e., the R-module homo-

morphism that sends an element m ∈ Mi to the I-tuple of elements with m in the ith component

and zeros elsewhere. Given any R-module homomorphism ϕ :
⊕

i∈I Mi → N, the I-tuple of com-

posite maps (ϕ ◦σi)i∈I yields an element of ∏i∈I HomR(Mi,N). Consider the R-module homomor-
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phism ψ : HomR (
⊕

i∈I Mi,N)→ ∏i∈I HomR(Mi,N) defined by ψ(ϕ) = (ϕ ◦σi)i∈I. Observe that

ϕ belongs to kerψ if and only if ϕ ◦σi is the zero homomorphism for each index i ∈ I if and

only if ϕ is the zero homomorphism on
⊕

i∈I Mi, hence ψ is injective. Given any element γ of

∏i∈I HomR(Mi,N), we may write γ = (γi)i∈I for some R-module homomorphisms γi : Mi → N.

Consider the R-module homomorphism ϕ :
⊕

i∈I Mi → N that sends (mi)i∈I 7→ ∑i∈I γi(mi). By

definition, an element of
⊕

i∈I Mi has only finitely many nonzero components, so ∑i∈I γi(mi) is a

well-defined element of N. Observe that for each index i ∈ I, we have that γi(mi) = ϕ ◦σi(mi),

hence we conclude that γ = (γi)i∈I = (ϕ ◦σi)i∈I so that ψ is surjective.

Let πi : ∏i∈I Ni → Ni denote ith component projection map, i.e., the R-module homomorphism

that sends an element (ni)i∈I ∈ ∏i∈I Ni to the element ni ∈ Ni. One can show that the R-module

homomorphism τ : HomR(M,∏i∈I Ni) → ∏i∈I HomR(M,Ni) defined by τ(ϕ) = (πi ◦ϕ)i∈I is bi-

jective in an analogous manner to the previous paragraph. We note that the last statement of the

proposition follows by Proposition 1.1 applied to HomR(Rn,N)∼= HomR(R,N)n.

Corollary 4.32. Let R be a commutative ring. Let M and N be R-modules. If M is finitely generated

and N is Noetherian, then HomR(M,N) is finitely generated as an R-module. Particularly, if R is

Noetherian and M and N are finitely generated, then HomR(M,N) is finitely generated.

Proof. By assumption, we have that M = R⟨x1, . . . ,xn⟩ for some elements x1, . . . ,xn. Consequently,

there exists a short exact sequence of R-modules 0 → K → Rn → M → 0; the induced sequence

of R-modules 0 → HomR(M,N)→ HomR(Rn,N)→ HomR(K,N) is exact by Proposition 1.3. Put

another way, there is an injective R-module homomorphism HomR(M,N)→ HomR(Rn,N), so we

may identity HomR(M,N) as an R-submodule of HomR(Rn,N). By Proposition 4.31, the latter R-

module is isomorphic to Nn; it is Noetherian by hypothesis, hence we conclude that HomR(M,N)

is finitely generated. We note that the last statement holds because if R is Noetherian, then an

R-module is Noetherian if and only if it is finitely generated.

4.4 Further Properties of Tensor Products and Tor

Our next proposition provides an analog of Corollary 4.32 for the tensor product.

43



Proposition 4.33. Let R be a commutative ring. If M and N are finitely generated R-modules, then

the tensor product M⊗R N is finitely generated as an R-module.

Proof. Every element of M⊗R N can be written as ∑
k
i=1 ri(mi ⊗R ni) for some integer k ≥ 0, some

elements r1, . . . ,rk ∈ R, and some distinct elements m1, . . . ,mk ∈ M and n1, . . . ,nk ∈ N. Each of the

elements mi can be written in terms of the generators of M, and each of the elements ni can be

written in terms of the generators of N. Consequently, if M = R⟨x1, . . . ,xr⟩ and N = R⟨y1, . . . ,ys⟩,

the bilinearity of the map τ implies that M⊗R N = R⟨xi ⊗R y j | 1 ≤ i ≤ r and 1 ≤ j ≤ s⟩.

Remarkably, one can characterize flat R-modules in the following manner.

Proposition 4.34. Let R be a commutative ring. The following properties are equivalent.

(i.) L is a flat R-module.

(ii.) If 0 → A α−→ B
β−→ L → 0 is a short exact sequence of R-modules, then the induced sequence

0 → M⊗R A
idM ⊗Rα−−−−−→ M⊗R B

idM ⊗Rβ−−−−−→ M⊗R L → 0 is exact for any R-module M.

Proof. Given any R-module M, consider the free R-module F indexed by M and the canonical

surjection π : F → M with kernel K. Observe that there is a short exact sequence of R-modules

0 → K i−→ F π−→ M → 0 such that the R-module homomorphism i : K → F is the inclusion map.

By applying the right-exact functors K ⊗R −, F ⊗R −, and M⊗R − to any short exact sequence of

R-modules 0 → A α−→ B
β−→ L → 0, we obtain the following diagram of R-modules.

K ⊗R A K ⊗R B K ⊗R L 0

0 F ⊗R A F ⊗R B F ⊗R L 0

M⊗R A M⊗R B M⊗R L 0

0 0 0

idK ⊗Rα

i⊗RidA

idK ⊗Rβ

i⊗RidB i⊗RidL

idF ⊗Rα

π⊗RidA

idF ⊗Rβ

π⊗RidB π⊗RidL

idM ⊗Rα idM ⊗Rβ

One can readily verify that the diagram commutes on the pure tensors of each tensor product, hence

the diagram commutes. Even more, the columns and rows of the diagram are exact by Proposition
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2.6 and Corollary 2.9. By the Snake Lemma, we obtain a short exact sequence of R-modules

ker(i⊗R idA)→ ker(i⊗R idB)→ ker(i⊗R idL)→ M⊗R A → M⊗R B → M⊗R L → 0.

By Proposition 2.7, we conclude that if L is flat, then i⊗R idL is injective so that ker(i⊗R idL) = 0

and 0 → M⊗R A
idM ⊗Rα−−−−−→ M⊗R B

idM ⊗Rβ−−−−−→ M⊗R L → 0 is exact.

We obtain the converse as a corollary of a later proposition. Explicitly, if condition (ii.) holds,

then TorR
1 (M,L) = 0 for all R-modules M so that L is a flat R-module.

4.5 Commutative Diagrams

One of the most useful facts in homological algebra is the following.

Lemma 4.35 (Snake Lemma). Consider the following commutative diagram of R-modules.

A B C 0

0 D E F

α

ϕ

β

ψ γ

δ ε

If the rows of this diagram are exact, then there exists an exact sequence of R-modules

kerϕ
α ′
−→ kerψ

β ′
−→ kerγ

χ−→ D
imgϕ

δ ′
−→ E

imgψ

ε ′−→ F
imgγ

.

Even more, if α is injective and ε is surjective, then α ′ is injective and ε ′ is surjective.

Proof. One can (and should) prove the Snake Lemma (at least once) via the method of “diagram

chasing.” We leave the details to the enjoyment of the reader (cf. [Gat13, Lemma 4.7]).

Using the Snake Lemma, one can deduce the following useful fact.

Corollary 4.36 (Short Five Lemma). Consider the following commutative diagram of R-modules.

0 A B C 0

0 D E F 0

α

ϕ

β

ψ γ

δ ε
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If the rows of this diagram are exact, then ψ is injective (or surjective) if ϕ and γ are injective (or

surjective). Even more, if any two of ϕ, ψ, and γ are isomorphisms, the third is an isomorphism.

Proof. By the Snake Lemma, there exists an exact sequence of R-modules

kerϕ → kerψ → kerγ → D
imgϕ

→ E
imgψ

→ F
imgγ

.

If ϕ and γ are injective, then kerϕ = 0 and kerγ = 0 imply that kerψ = 0. If ϕ and γ are surjective,

then D = imgϕ and F = imgγ imply that E/ imgψ = 0, i.e., E = imgψ. If any two of ϕ, ψ, and γ

are isomorphisms, then the kernel and cokernel of the third map will be trapped between zeros in

the exact sequence; this forces both of these modules to be zero so the map is an isomorphism.

Using the Short Five Lemma, we obtain the Splitting Lemma (cf. [Gat13, Corollary 4.14]);

however, it is possible to provide a proof by elementary means as follows.

Lemma 4.37 (Splitting Lemma). A short exact sequence of R-modules 0→ A α−→ B
β−→C → 0 splits

if any of the following equivalent conditions holds.

(i.) There exists an R-module homomorphism ϕ : B → A such that idA = ϕ ◦α.

(ii.) There exists an R-module homomorphism γ : C → B such that idC = β ◦ γ.

(iii.) There exists an R-module isomorphism ψ : B → A⊕C such that ψ ◦α is the first component

inclusion map A → A⊕C and β ◦ψ−1 is the second component projection map A⊕C →C.

Proof. By the proofs of Propositions 1.4 and 1.6, it suffices to prove that (iii.) =⇒ (i.) and (iii.)

=⇒ (ii.). Observe that if ψ ◦α is the first component inclusion map A → A⊕C, then the first

component projection map π1 : A⊕C → A satisfies that idA = π1 ◦ψ ◦α. Likewise, if β ◦ψ−1 is

the second component projection map, then the second component inclusion map σ2 : C → A⊕C

satisfies idC = β ◦ψ−1 ◦σ2. We conclude that (iii.) =⇒ (i.) and (iii.) =⇒ (i.).

One can also prove a general version of the Short Five Lemma from which the above follows.

46



Lemma 4.38 (Five Lemma). Consider the following commutative diagram of R-modules.

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

α1

ϕ1

α2

ϕ2

α3

ϕ3

α4

ϕ4 ϕ5

β1 β2 β3 β4

If the rows of this diagram are exact, then the following statements hold.

1.) If ϕ1 is surjective and ϕ2 and ϕ4 are injective, then ϕ3 is injective.

2.) If ϕ5 is injective and ϕ2 and ϕ4 are surjective, then ϕ3 is surjective.

Particularly, if ϕ1, ϕ2, ϕ4, and ϕ5 are isomorphisms, then ϕ3 is an isomorphism.
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