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Motivation

On a basic level, the study of numerical semigroups is motivated by the
study of polynomials.

One can phrase the question as follows.

“If McNuggets come in packs of n1, n2, . . . , nk McNuggets, what is the
largest number of McNuggets I cannot obtain without leftovers?”

For example, if I can get a 3- or 5-piece McNugget, the largest number of
McNuggets I cannot obtain without leftovers is seven McNuggets.

On a much deeper level, numerical semigroups induce an interesting class
of one-dimensional Cohen-Macaulay local rings.

Dylan C. Beck (University of Kansas) Blow-Up Numerical Semigroups 5 December 2021 2 / 27



Motivation

On a basic level, the study of numerical semigroups is motivated by the
study of polynomials. One can phrase the question as follows.

“If McNuggets come in packs of n1, n2, . . . , nk McNuggets, what is the
largest number of McNuggets I cannot obtain without leftovers?”

For example, if I can get a 3- or 5-piece McNugget, the largest number of
McNuggets I cannot obtain without leftovers is seven McNuggets.

On a much deeper level, numerical semigroups induce an interesting class
of one-dimensional Cohen-Macaulay local rings.

Dylan C. Beck (University of Kansas) Blow-Up Numerical Semigroups 5 December 2021 2 / 27



Motivation

On a basic level, the study of numerical semigroups is motivated by the
study of polynomials. One can phrase the question as follows.

“If McNuggets come in packs of n1, n2, . . . , nk McNuggets, what is the
largest number of McNuggets I cannot obtain without leftovers?”

For example, if I can get a 3- or 5-piece McNugget, the largest number of
McNuggets I cannot obtain without leftovers is seven McNuggets.

On a much deeper level, numerical semigroups induce an interesting class
of one-dimensional Cohen-Macaulay local rings.

Dylan C. Beck (University of Kansas) Blow-Up Numerical Semigroups 5 December 2021 2 / 27



Motivation

On a basic level, the study of numerical semigroups is motivated by the
study of polynomials. One can phrase the question as follows.

“If McNuggets come in packs of n1, n2, . . . , nk McNuggets, what is the
largest number of McNuggets I cannot obtain without leftovers?”

For example, if I can get a 3- or 5-piece McNugget, the largest number of
McNuggets I cannot obtain without leftovers is seven McNuggets.

On a much deeper level, numerical semigroups induce an interesting class
of one-dimensional Cohen-Macaulay local rings.

Dylan C. Beck (University of Kansas) Blow-Up Numerical Semigroups 5 December 2021 2 / 27



Conventions and Notation

We adopt throughout this talk the following conventions and notation.

1 (Z≥0,+) is the commutative monoid of non-negative integers.

2 Given non-negative integers a1, . . . , an with gcd(a1, . . . , an) = 1,

⟨a1, . . . , an⟩ = {c1a1 + · · ·+ cnan | c1, . . . , cn ∈ Z≥0}.

3 Given any nonempty subset S ⊆ Z≥0, we write S∗ = S \ {0}.
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What Is a Numerical Semigroup?

We say that a nonempty S ⊆ Z≥0 is a numerical semigroup provided that

1 0 is an element of S ;

2 S is closed under addition; and

3 Z≥0 \ S is finite.

Conditions (1.) and (2.) combined say that S is a submonoid of Z≥0.
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Representations of Numerical Semigroups

Theorem 2.7, Garćıa-Sánchez and Rosales

Every numerical semigroup S admits a unique finite minimal system of
generators S∗ \ (S∗ + S∗). Put another way, there exist unique integers
a1, . . . , an ∈ S∗ such that S = {c1a1 + · · ·+ cnan | c1, . . . , cn ∈ Z≥0}.

Lemma 2.1, Garćıa-Sánchez and Rosales

Let S be a submonoid of Z≥0 with S∗ \ (S∗ + S∗) = {a1, . . . , an}. We
have that S is a numerical semigroup if and only if gcd(a1, . . . , an) = 1.

Consequently, every numerical semigroup is of the form ⟨a1, . . . , an⟩ for
some unique positive integers a1, . . . , an such that gcd(a1, . . . , an) = 1.
Particularly, we have that S∗ \ (S∗ + S∗) = {a1, . . . , an}.
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Basic Invariants of Numerical Semigroups

Let S be a numerical semigroup.

1 Considering that Z≥0 \ S is finite, we may refer to the positive integer
F(S) = max{n | n ∈ Z≥0 \ S} as the Frobenius number of S .

2 We define the multiplicity e(S) = min{n | n ∈ S∗}.

3 We refer to the cardinality µ(S) of the unique minimal system of
generators of S as its embedding dimension.

By the Pigeonhole Principle, we must have that µ(S) ≤ e(S). We say that
S has maximal embedding dimension if equality holds.
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Example Numerical Semigroup

Example.

Consider the numerical semigroup S = ⟨3, 7, 8⟩.

We have that F(S) = 5,
e(S) = 3, and µ(S) = 3, hence S has maximal embedding dimension.
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Pseudo- and Difference-Frobenius Numbers

Let S be a numerical semigroup. We define the pseudo-Frobenius numbers

PF(S) = {n ∈ Z≥0 \ S | n + s ∈ S for all elements s ∈ S∗}.

Observe that F(S) is the largest pseudo-Frobenius number of S . We define
the difference-Frobenius numbers of S as

DF(S) = {F(S)− x | x ∈ PF(S)}.

We say that S is divisive if 1 ∈ DF(S) or F(S)− 1 ∈ PF(S). We say that
S is far-flung Gorenstein if every integer 0 ≤ i ≤ e(S)− 1 can be written
as d1 + d2 for some difference Frobenius numbers d1 and d2. Particularly,
every far-flung Gorenstein numerical semigroup is divisive.
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Example Numerical Semigroup, Cont’d

Example.

Consider the numerical semigroup S = ⟨3, 7, 8⟩. We have that

PF(S) = {4, 5} and DF(S) = {0, 1}.

Particularly, S is a divisive numerical semigroup.
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Symmetric Numerical Semigroups

Let S be a numerical semigroup. We say that S is symmetric if

(1.) F(S) is odd and

(2.) for every integer n ≥ 1, either n ∈ S or F(S)− n ∈ S .

Consequently, we have that S is symmetric if and only if PF(S) = {F(S)}.
Particularly, divisive numerical semigroups are never symmetric.
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Divisive Numerical Semigroups Generated by Intervals

Theorem.

Let S be a numerical semigroup generated by an interval, i.e., let

S = ⟨m,m + 1,m + 2, . . . ,m + n⟩

for some integers m > n ≥ 2.

The following statements are equivalent.

(1.) The least non-negative residue of m − 1 modulo n is not equal to 1
and either (a.) m is odd or (b.) m is even and n ≥ 3.

(2.) S is divisive, i.e., we have that F(S)− 1 /∈ S .
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The Necessity of the Condition on m − 1 Modulo n

We note that the condition that the least non-negative residue of m − 1
modulo n is not equal to 1 cannot be dropped.

Example.

Consider the numerical semigroup S = ⟨5, 6, 7, 8⟩. Observe that F(S) = 9
and F(S)− 1 = 8 belongs to S , hence S is not divisive.

Even more, it can be shown that if the least non-negative residue of m− 1
modulo n is 1, then the numerical semigroup S = ⟨m,m + 1, . . . ,m + n⟩
with m > n ≥ 2 always admits F(S)− 1 ∈ S .
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Ideals of a Numerical Semigroup

We say that I ⊆ Z is a (relative) ideal of a numerical semigroup S if

1 I ⊇ S + I = {s + i | s ∈ S and i ∈ I} and

2 there exists an element s ∈ S such that s + I ⊆ S .

We note that S∗ is a proper ideal of S that is maximal with respect to
inclusion among all proper ideals of S ; it is the maximal ideal of S .

We denote by C = {F(S)− n | n ∈ Z \ S} the relative canonical ideal of S .
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Finitely Generated Ideals of a Numerical Semigroup

We say that a (relative) ideal I of a numerical semigroup S is finitely
generated if there exist elements x1, . . . , xn ∈ I such that

I = {x1, . . . , xn}+ S = {xi + s | 1 ≤ i ≤ n and s ∈ S}.

Every numerical semigroup is Noetherian. Particularly, every proper ideal
of a numerical semigroup is finitely generated. For example, the maximal
ideal S∗ is finitely generated by the minimal generators of S .

Crucially, the relative canonical ideal C of S is also finitely generated by
{F(S)− x | x ∈ PF(S)}, but the proof is beyond the scope of this talk.
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Blow-Up Numerical Semigroups

Let I be a proper ideal of a numerical semigroup S generated by
x1 < · · · < xn. We define the blow-up numerical semigroup

BS(I ) = S + Z≥0⟨xi − x1 | 1 ≤ i ≤ n⟩.

We will study the canonical blow-up BS(C ) of a numerical semigroup. If
BS(C ) is symmetric, we say that S has the Gorenstein canonical blow-up
property. We will typically abbreviate this by saying that S is GCB.
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Example Blow-Up Numerical Semigroup

Example.

Consider the numerical semigroup S = ⟨3, 7, 8⟩. Observe that F(S) = 5,
PF(S) = {4, 5}, and C = {F(S)− n | n ∈ Z \ S} = S ∪ {1, 4}.

We
conclude that BS(C ) = S + Z≥0⟨0, 1⟩ = Z≥0. So, S is divisive and GCB.
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An Elegant Description of the Canonical Blow-Up

Proposition. (B-Dao)

Let S be a numerical semigroup with relative canonical ideal C and
difference-Frobenius numbers DF(S). We have that

BS(C ) = S + Z≥0⟨d | d ∈ DF(S)⟩.

Consequently, every divisive numerical semigroup is GCB.
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A Numerical Semigroup of Multiplicity ≤ 3 Is GCB

Proposition. (B-Dao)

Let S be a numerical semigroup. If e(S) ≤ 3, then S is GCB.

Clearly, if e(S) = 1, then S = Z≥0 = BS(C ). Further, it is known that
every numerical semigroup with µ(S) = 2 is symmetric so that BS(C ) = S
is symmetric. Consequently, it suffices to prove the claim in the case that
S = ⟨3, a, b⟩ and 3 < a < b. We have that BS(C ) = ⟨3, b − a⟩.
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A Non-GCB Numerical Semigroup of Multiplicity 4

Our previous proposition does not extend to the case that e(S) = 4.

Example.

Consider the numerical semigroup S = ⟨4, 11, 13, 18⟩. One can show that
PF(S) = {7, 9, 14} so that BS(C ) = Z≥0⟨4, 5, 7, 11, 13, 18⟩ = ⟨4, 5, 7⟩.
Observe that BS(C ) is not symmetric because F(BS(C )) = 6 is not odd.
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Almost and Nearly Symmetric Numerical Semigroups

If I , J ⊆ Z are ideals of a numerical semigroup S , we define

I − J = {n ∈ Z | n + J ⊆ I}.

One can show that this is an ideal of S — the colon ideal of I and J.

Definition. (Herzog-Hibi-Stamate, 2019)

We say that S is nearly Gorenstein if S∗ ⊆ C + (S − S∗).

Definition. (Moscariello-Strazzanti, 2020)

We say that S is almost Gorenstein if S∗ + C = S∗.

Observe that if S is almost Gorenstein, then it is nearly Gorenstein.
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Maximal Embedding Dimension and Almost Symmetric

Theorem. (B-Dao)

Let S be a numerical semigroup of maximal embedding dimension. We
have that S is almost symmetric if and only if it is nearly symmetric.

Further, if either condition holds, then BS(C ) is symmetric, i.e., S is GCB.

We note that the condition that S is almost symmetric if and only if it is
nearly symmetric holds in general for one-dimensional Cohen-Macaulay
local rings of minimal multiplicity with infinite residue field.
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A Non-GCB Almost Symmetric Numerical Semigroup

We note that the assumption of the previous theorem that S has maximal
embedding dimension cannot be dropped.

Example.

Consider the numerical semigroup S = ⟨4, 7, 9⟩. Observe that
PF(S) = {5, 10}, hence we have that BS(C ) = Z≥0⟨4, 5, 7, 9⟩ = ⟨4, 5, 7⟩.
We have seen in a previous example that ⟨4, 5, 7⟩ is not symmetric, hence
S is not GCB. On the other hand, we have that C = S ∪ {5}, from which
it follows that S∗ + C ⊆ S∗ so that S is almost symmetric.
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A Non-Almost Symmetric GCB Numerical Semigroup

Even in the case that S has maximal embedding dimension, the converse
of the previous theorem does not hold.

Example.

Consider the numerical semigroup S = ⟨3, 7, 8⟩. We have already seen that
S is divisive, hence S is GCB; however, we have that C = S ∪ {1}, and the
element 3 + 1 = 4 ∈ (S∗ +C ) \ S∗ implies that S is not almost symmetric.
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Questions
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