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Broadly, my mathematical research interests lie in the theory of commutative algebra. Put simply,
commutative algebra is the study of basic arithmetic operations such as addition and multiplication.
We refer to a set R that contains 0 as a ring whenever addition, subtraction, and multiplication can
be performed on any pair of objects in R such that the resulting sum, difference, or product belongs
to R and the familiar distributive laws of addition and multiplication hold. Given that the product of
two elements r and s of R satisfies r · s = s · r, we say that R is commutative; if there exists a unique
element 1 in R such that 1 · r = r = r · 1 holds for every element r of R, we say that R is unital.

Even though their structure is completely determined by the operations of addition and multipli-
cation, commutative unital rings give rise to a wealth of interesting and beautiful properties. Essential
to our understanding is the introduction of additional algebraic structures such as ideals and modules.
Concretely, an ideal I of a commutative ring R is a collection of ring elements such that (a.) the
sum of any two elements of I yields an element of I and (b.) the product of any element of I by an
arbitrary ring element yields an element of I. On the other hand, a module M over a commutative
ring R is a collection of elements (not necessarily lying in R) such that any pair of elements can be
added and multiplication r ·m can be performed on any pair with r lying in R and m lying in M.

Polynomials are perhaps the most familiar class of commutative rings. Polynomials behave intu-
itively; however, if we restrict ourselves only to the variables xs1 , . . . , xsn for some positive integers
s1, . . . , sn, things become much more interesting. Concretely, the polynomial f(x) = 3x8−x5+x2+1
makes sense in the ring of polynomials with rational coefficients Q[x], but f(x) is no longer feasible in
the variables x3 and x7 since the only powers of x appearing in such a polynomial must be of the form
3a+ 7b for some non-negative integers a and b. Consequently, polynomials model more sophisticated
problems in additive number theory such as the membership problem of a numerical semigroup.

Even more, we may associate to any finite simple graph G on n vertices a squarefree monomial
ideal I(G) of the n-variate polynomial ring k[x1, . . . , xn] over a field k. By this correspondence, we may
deduce information about G via the properties of I(G) and vice-versa: one can show that the ideal
I(G) is the Stanley-Reisner ideal associated to the independence complex of the graph G. Ultimately,
these identifications forge a strong relationship — known as Stanley-Reisner theory — between the
study of polynomial rings and combinatorics that has been fruitfully implemented for decades.

Broadly, the algebraic structures defined in the previous two paragraphs are monomial algebras.
By themselves, monomial algebras constitute subtle and interesting structures whose study is chal-
lenging yet enjoyable; however, monomial algebras play an important role in bioinformatics, signal
processing, and systems biology that make them invaluable in applications and mathematical model-
ing. Consequently, my research seeks to understand the nature of these monomial algebras.

1 Numerical Semigroups and Numerical Semigroup Rings

Univariate polynomial rings over fields enjoy well-studied and well-understood properties; however,
if we restrict our attention to polynomials in xa1 , . . . , xan for some indeterminate x and positive integers
a1 < · · · < an, the situation becomes much more complicated. Central to this study, the polynomial
membership problem seeks to determine whether a polynomial in x can be written as a polynomial in
xa1 , . . . , xan . Concretely, observe that x12 − 17x7 + 3x4 + 2x3 is a polynomial in x3 and x4 because
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12 = 3 · 4 and 7 = 3 + 4 yield that x12 = (x4)3 = (x3)4 and x7 = x3 · x4; however, it is easily verified
that x5−x2+x cannot be written as a polynomial in x3 and x4 simply because of the x and x2 terms.

Considering that multiplication of the monomials xa and xb corresponds to addition of the expo-
nents a and b since xa · xb = xa+b, the polynomial membership problem is equivalent to the additive
membership problem of the exponents of the monomials that generate the monomial subring k[xa, xb]
of k[x]. Based on this observation, it is fruitful to study the numerical semigroup S consisting of the
non-negative integer powers of the monomials xs to which we restrict our consideration.

Let k be a field. Consider the monomial subring k[xs | s ∈ S] of k[x] consisting of all polynomials in
the monomials xs for some subset S ⊆ Z≥0 of the non-negative integers that contains 0, is closed under
addition, and satisfies Z≥0 \S is finite. We refer to the nonempty set S as a numerical semigroup; the
commutative unital ring k[S] = k[xs | s ∈ S] is its corresponding numerical semigroup ring. Crucially,
observe that xa belongs to k[S] if and only if the integer a belongs to S. Observe that the Frobenius
number F(S) = max(Z≥0 \ S) is well-defined. We define the pseudo-Frobenius numbers of S as

PF(S) = {n ∈ Z≥0 \ S | n+ s ∈ S for all nonzero elements s ∈ S}.

One can establish that there exist relatively prime integers a1 < · · · < an ∈ S such that S consists
precisely of all Z≥0-linear combinations of these integers a1, . . . , an, i.e., S = Z≥0⟨a1, . . . , an⟩. Even
more, one may take the generators a1, . . . , an to be minimal among all sets of generators of S. We refer
to the minimum number of generators of S as the embedding dimension µ(S); the least positive integer
belonging to S is its multiplicity e(S). We note that µ(S) ≤ e(S) holds by the Pigeonhole Principle.

On their own, numerical semigroups have been studied at length by Fröberg (see [Fr94]), Garćıa-
Sánchez (see [AsGS, DelG-SR-P, G-SR99, G-SR09]), Herzog (see [He69, HeHiSta21, HeKumSta]), and
many others because the numerical semigroup rings constitute an interesting class of one-dimensional
Cohen-Macaulay rings whose properties are intimately connected with the properties of the corre-
sponding numerical semigroup. Concretely, one can show that the embedding dimension and (Hilbert-
Samuel) multiplicity of k[S] and S are equal. Kunz showed that the numerical semigroup ring k[S] is
Gorenstein if and only if the numerical semigroup S is symmetric (see [Kun]). Even more, a numerical
semigroup of embedding dimension two is Gorenstein. In a landmark result [He69, Theorem 4.2.1] of
his 1969 thesis, Herzog showed that a numerical semigroup of embedding dimension three is Goren-
stein if and only if it is a complete intersection. Later, Fröberg proved that the Cohen-Macaulay type
of k[S] is equal to the cardinality of the set of pseudo-Frobenius elements of S (see [Fr94]).

Originally motivated by an interesting new class of numerical semigroups — called far-flung Goren-
stein — introduced by Herzog-Kumashiro-Stamate in [HeKumSta], in joint work [BeDao] with Hailong
Dao, we define the difference-Frobenius numbers of a numerical semigroup S as

DF(S) = {F(S)− x | x ∈ PF(S)},

where F(S) is the Frobenius number of S and PF(S) is the set of pseudo-Frobenius numbers of S. We
say that S is divisive whenever 1 is a difference-Frobenius number. By definition, a divisive numerical
semigroup is not symmetric. We find that a far-flung Gorenstein numerical semigroup is divisive, but
the converse does not hold in general. It turns out that the divisive numerical semigroups that have
certain simple or desirable properties can sometimes be described elegantly. Particularly, we determine
completely those numerical semigroups generated by intervals that are divisive, and we show that a
numerical semigroup of minimal multiplicity (i.e., maximal embedding dimension) is divisive if and
only if its largest and second-largest generators differ by 1. We exhibit a class of “sparse” numerical
semigroups with embedding dimension four that are divisive. Ultimately, we ask the following.

Question 1.1. Other than numerical semigroups of minimal multiplicity and those that are generated
by intervals, for what classes of “well-behaved” numerical semigroups is it tractable to completely
determine the circumstances under which such a numerical semigroup is divisive?
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Let I be a subset of Z. We say that I is an ideal of S if I ⊇ S + I = {s+ i | s ∈ S and i ∈ I} and
s+ I ⊆ S for some integer s ∈ S. Put another way, I must be closed under addition by elements of S
and must admit a smallest element (i.e., a largest negative integer). We refer to a numerical semigroup
S with maximal ideal M = S \ {0} and canonical ideal Ω = {−n | n ∈ Z \ S} as nearly Gorenstein
if M ⊆ Ω + (S − Ω) and almost Gorenstein if M + Ω = M, where S − Ω = {m ∈ Z | m + Ω ⊆ S} is
the ideal of differences between S and Ω. Observe that any almost Gorenstein numerical semigroup is
nearly Gorenstein; the converse does not hold. Recent results of [MosStr] and [HeHiSta19, HeHiSta21]
suggest an interesting connection between these classes of numerical semigroups and the trace ideal of
the canonical module of the numerical semigroup ring k[[S]]. Based on this, we define the blow-up of a
numerical semigroup S with respect to a proper ideal I ⊆ S generated by x1 < · · · < xn as

BS(I) = S + Z≥0⟨xi − x1 | 1 ≤ i ≤ n⟩.

We say that a numerical semigroup S has the Gorenstein canonical blow-up (GCB) property whenever
its canonical blow-up BS(Ω) is symmetric. Our main theorem of [BeDao] demonstrates that many in-
teresting classes of numerical semigroups exhibit the GCB property: indeed, Arf, far-flung Gorenstein,
divisive, and numerical semigroups of multiplicity at most three are GCB. Even more, if S has minimal
multiplicity, then the GCB property is equivalent to the condition that S is almost Gorenstein.

Question 1.2. For what other classes of numerical semigroups is it tractable to completely determine
the circumstances under which such a numerical semigroup is GCB?

Even though numerical semigroups exhibit subtle behavior, they provide interesting research ques-
tions that are well-suited for undergraduate mathematics students. Concretely, students can readily
run computations and experiment to form conjectures using the [GAP System] computer software.
One immediate direction regarding Questions 1.1 and 1.2 is to investigate pinched discrete interval nu-
merical semigroups, which are derived from numerical semigroups generated by intervals by removing
some elements. Recently, the author has classified all pinched discrete interval numerical semigroups
of the form ⟨n, n+1, 2n− 2, 2n− 1⟩ as symmetric, divisive, or neither (see [Be, Chapter 3, Section 5]).

Other than their extensive importance in commutative algebra, numerical semigroups find appli-
cations in algebraic coding theory and cryptography (see [CFM], [DelFG-SL13], and [DelFG-SL14]).

2 Properties of Stable and Trace Ideals of Curve Singularities

Commutative algebraists classify the “largeness” of a commutative unital local ring R primarily
through two invariants: depth and Krull dimension, denoted by depth(R) and dim(R), respectively.
Briefly put, depth measures “homological largeness” and Krull dimension measures “topological large-
ness.” If these two invariants coincide, i.e., depth(R) = dim(R), we say that R is Cohen-Macaulay.
Vast amounts of research have been dedicated to the study of Cohen-Macaulay rings (see [BrHe]).

Gorenstein rings form a strict subclass of Cohen-Macaulay rings that have been studied extensively
for decades (see [BrHe], [Fox], [HeKun], or [LeuWie]). Crucially, a Gorenstein local ring R admits a
canonical module ωR that is “structurally equivalent” to R, i.e., we have that ωR

∼= R as R-modules.
Even more, a canonical module of a Noetherian local ring (R,m) behaves well with respect to the
topological process of m-adic completion. Particularly, if we denote by R̂ the m-adic completion of R,
we have that ω

R̂
∼= ω̂R is a canonical module of the Noetherian local ring (R̂,mR̂). We say that R is

analytically unramified if R̂ is reduced, i.e., every power of a nonzero element of R̂ is nonzero.
We assume throughout this section that (R,m, k) is an analytically unramified one-dimensional

Cohen-Macaulay local ring with infinite residue field k, total ring of fractionsQ(R), and integral closure
R. Under these conditions, it is known that R possesses a canonical ideal ωR ⊆ R (see [HeKun]) and
every m-primary ideal of R has a principal reduction (cf [HuSw, Proposition 8.3.7]). Based on recent
work of Herzog, Stamate, et al. (see [HeHiSta19, HeHiSta21, HeKumSta]), the author has sought in
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joint work with Hailong Dao to understand the role that the canonical ideal ωR plays in determining
the structure of R. Generally, our work aims to answer questions about when the canonical blow-up

B(ωR) =
⋃
n≥0

(ωn
R : ωn

R) = {α ∈ Q(R) | αωn
R ⊆ ωn

R}

is Gorenstein, almost Gorenstein, or nearly Gorenstein, or satisfies that B(ωR) = R (see [BeDao]).
Using the properties of stable ideal theory outlined in the seminal work of Lipman [Lip] in con-

junction with techniques related to trace ideals described in recent work of Dao [Dao21], Dao-Lindo
[DaoLin], Dao-Maitra-Sridhar [DaoMaSr], and Kobayashi-Takahashi [KoTa], we have determined that
the properties of B(ωR) are intimately related to the behavior of sufficiently large powers of ωR and
their trace ideals. Particularly, the Gorensteinness of B(ωR) is equivalent to any of the following.

(1.) There exists an n ≫ 0 such that ωn
R
∼= (ωn

R)
∨, where −∨ denotes the canonical dual of −.

(2.) There exists an n ≫ 0 such that ωn
R is self-dual.

(3.) There exists an n ≫ 0 such that tr(ωn
R) is stable.

Further, we show that any Arf ring has the GCB property. Using the dual of the canonical blow-up
b(ωR) = (R : B(ωR)), we exhibit equivalent properties for R to be almost Gorenstein. For instance, if
m is ωR-Ulrich or m ⊆ b(ωR), then R is almost Gorenstein; the converses hold, as well.

Extensive effort has been made jointly by Dao and the author toward the case that RS = k[[S]] is
the numerical semigroup ring corresponding to the numerical semigroup S. Observe that a numerical
semigroup ring is a complete one-dimensional Noetherian local domain and hence Cohen-Macaulay.
Further, by a result of Nagata in [Na], the integral closure of a numerical semigroup ring is module-
finite, hence the integral closure of RS is a module-finite birational extension of RS . Using the methods
described in the last two paragraphs of the previous section, there is an elegant description of the canon-
ical blow-up of RS as an RS-algebra whose generators are simply the difference-Frobenius numbers.
Consequently, the properties of the canonical blow-up of RS are intimately related to the properties
of the canonical blow-up of S. We show that the divisive numerical semigroup rings are a natural
generalization of the far-flung Gorenstein numerical semigroup rings of Herzog-Kumashiro-Stamate.

3 Additive Number Theory, Sumsets, and Monomial Subrings

Consider a nonempty (not necessarily finite) subset S ⊆ Z≥0. We say that S is Sidon if for every
pair of non-negative integers i ≤ j, the sum si + sj of the elements si, sj ∈ S is unique. Put another
way, there do not exist distinct pairs of integers i ≤ j and i′ ≤ j′ such that si + sj = si′ + sj′ for some
elements si, sj , si′ , sj′ ∈ S. Originally introduced by Simon Sidon in his study of Fourier series, Sidon
sets attracted significant interest in the field of additive number theory after a result of Erdös and
Turán showed that for every real number x > 0, the number of elements of a Sidon set that do not
exceed x is at most 4

√
x+O( 4

√
x) (see [ErdTu]). Even now, it remains an open problem to determine

the maximum number of elements not exceeding a real number x > 0 that a Sidon set can contain.
One may consider the question of Sidon as to how “dense” a Sidon set can be if its largest element

does not exceed some real number x > 0. Conversely, given a positive integer m, one may ask the
question of how “sparse” a set can be such that the n-fold sum of its elements achieves a maximum value
of m. Colloquially, this is known as the Postage Stamp Problem due to the following interpretation:
if an envelope affords enough space for n stamps and there are k denominations of stamps available,
what is the maximum cost of postage m such that any letter of cost 0, 1, . . . ,m can be mailed?
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Given any nonempty subset A of non-negative integers, we define the n-fold sum of A as

nA = A+ · · ·+A︸ ︷︷ ︸
n summands

= {a1 + · · ·+ an | a1, . . . , an ∈ A},

and we denote by [m] = {0, 1, . . . ,m} the discrete interval [0,m]∩Z. Considered the first to state the
Postage Stamp Problem, Rohrbach defined the invariants m(n,A) = max{m : {0, 1, . . . ,m} ⊆ nA}
and m(n, k) = max{m(n,A) : |A| = k} in his seminal 1937 paper [Roh]. Even though it is relatively
simple to state, it has been shown that the computational complexity of the problem is exponential
in both n and k, and there remain many open questions regarding m(n, k) (see [AlBa]).

One particular case of the Postage Stamp Problem centers around the notion of a complete double.
Consider any nonempty subset A ⊆ [a]. We say that A is a complete double of [a] if 2A = [2a]. Clearly,
every discrete interval [a] is a complete double of itself, hence one might ask for the least cardinality
µ(a) = min{|A| : 2A = [2a]} of A such that A is a complete double of a. Based on the discussion to
a post by Hailong Dao on MathOverflow (see [Dao19]), the author has established mild bounds for
µ(a) in [Be, Chapter 5, Section 2]. Further, in the same section, the author has defined the regularity
reg(A) = inf{n | nA = [na]} of A and exhibited necessary and sufficient conditions to guarantee that
reg(A) is finite. Even still, questions remain regarding an explicit connection between |A| and reg(A).

Question 3.1. Is there an elegant relationship between |A| and reg(A)?

Question 3.2. What are the bounds on |A| such that reg(A) = 3, i.e., A is a complete triple of [a]?

Question 3.3. Is there a sharper bound between reg(A) and a− 2 = max{reg(A) : reg(A) < ∞}?
Curiously, the theory of complete doubles has interesting and important applications in homological

algebra. Given any subset A ⊆ [a] that contains {0, 1, a− 1, a}, we may define the monomial subring

k[x, y](A) = k[xiya−i | i ∈ A] ⊆ k[x, y].

Crucially, the homological properties of k[x, y](A) are intimately connected with the number-theoretic
properties of A. We have computed in [Be, Chapter 5, Section 3] the Hilbert series, (Hilbert-Samuel)
multiplicity, and (Castelnuovo-Mumford) regularity of k[x, y](A) in terms of the invariants of A; thus,
we have reduced sophisticated and important algebraic questions to a more tractable setting of additive
number theory in which the techniques involved in many of the underlying proofs and computations
are viable to any undergraduate mathematics student with a basic understanding of calculus.

Conversely, planar additive bases are closely related to the study of complete doubles (see [KKR])
and enjoy applications in signal processing and active imaging (see [HoKa] and [KoKa]). Consequently,
we are afforded algebraic techniques to solve an inherently number-theoretic optimization problem.

4 Combinatorial Commutative Algebra and Stanley-Reisner Theory

We say that a pair G = (V,E) consisting of sets V of vertices and E ⊆ V × V of edges is a
finite simple graph whenever V consists of finitely many elements and E does not contain any loops or
multiple edges. Loops are pairs of vertices of the form (v, v), and an edge (v, w) is called a multiple edge
if (w, v) is also an edge. Conventionally, we assume that the n vertices of G are the positive integers
1 through n, i.e., V = {1, 2, . . . , n}. We say that a nonempty collection of vertices V ′ constitutes an
independent vertex set if for any two vertices i, j ∈ V ′, we have that (i, j) is not an edge of G.

Generalizing the notion of a finite simple graph is that of a simplicial complex ∆. We say that ∆ is
a simplicial complex on the vertex set [n] = {1, 2, . . . , n} if ∆ is a nonempty subset of 2[n] such that for
every pair of subsets σ, τ ∈ 2[n] with τ ⊆ σ, if σ belongs to ∆, then τ belongs to ∆. Put another way,
∆ must be closed with respect to the operation of taking subsets. We point out that some familiar
geometric objects — such as line segments, triangles, and tetrahedra — are simplicial complexes.
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Every finite simple graph on n vertices gives rise to a quotient of the polynomial ring in n variables.
Explicitly, for a field k, a finite simple graph G = (V,E) on n vertices can be related to the quotient
ring k(G) = k[x1, . . . , xn]/I(G) by the squarefree monomial ideal I(G) = (xixj | (i, j) ∈ E). We refer
to I(G) as the edge ideal of G and to k(G) as the edge ring of G. Likewise, every simplicial complex
on n vertices gives rise to a quotient of the polynomial ring in n variables. For simplicity, we use the
same residue field. Explicitly, we define the Stanley-Reisner ring k[∆] = k[x1, . . . , xn]/I∆, where

I∆ = (xi1xi2 · · ·xik | {i1, i2, . . . , ik} ⊆ 2[n] \∆)

is the Stanley-Reisner ideal of k[x1, . . . , xn] generated by the monomials corresponding to subsets of
2[n] that do not belong to ∆. Often, the elements of ∆ are referred to as faces, hence I∆ is generated by
monomials corresponding to non-faces of ∆. We do not assume that all of the integers of [n] correspond
to vertices of ∆, hence it is possible that xi belongs to I∆ for some integer 1 ≤ i ≤ n so that k[∆] is a
quotient of the polynomial ring in fewer than n elements. We recall that the set ∆G consisting of the
independent vertex sets of G is a simplicial complex, eponymously called the independence complex of
G. One can show that the edge ideal of G and the Stanley-Reisner ideal of ∆G are equal, hence we have
that k(G) = k[∆G] (see [MooRogSa-Wa, Theorem 4.4.9]). Consequently, the so-called Stanley-Reisner
theory can be employed to understand properties of the edge ring k[G] and vice-versa.

Recently, the author introduced in joint work [BeDey] with Souvik Dey the following pair of new
invariants ms(R) and cs(R) of a Noetherian (standard graded) local ring (R,m, k).

cs(R) = min{dimk(I/mI) | I ⊆ m is a (homogeneous) ideal of R such that m2 = I2}
ms(R) = min{dimk(I/mI) | I ⊆ m is a (homogeneous) ideal of R such that m2 ⊆ I}.

Particularly, we sought to understand these invariants for the edge ring k(G) of a finite simple graph G
and a fixed field k. Conventionally, we write ms(G) and cs(G) for ms(k(G)) and cs(k(G)), respectively.
Even though we can compute ms(R) and cs(R) in some cases, it turns out that these invariants behave
in a surprisingly subtle manner in the setting of edge rings of finite simple graphs. We proved that

ms(Kn) = 1 and cs(Kn) =

⌈√
2n+

1

4
− 1

2

⌉

for the complete graph Kn on n vertices and that ms(Sn) = n− 1 and cs(Sn) = n for the star graph
Sn on n vertices. Consequently, we believe that ms(G) and cs(G) are determined in some way by the
“connectivity” and number of edges of G; the exact relationship is as yet undetermined.

Crucially, we have illustrated that ms(G) does not change with respect to adding a cone vertex to
G (i.e., taking the graph join of G with a new vertex), hence it suffices to study ms(G) in the case
that G has diameter two. We have found along these lines that if G admits a “sufficiently connected”
edge cover by ℓ edges, then ms(G) ≤ ℓ; however, it is unclear if every finite simple graph of diameter
two admits such an edge cover. Our future work will therefore concern the following two questions.

Question 4.1. Can we compute ms(G) and cs(G) for many classes of familiar graphs? Bounds have
been given for (a.) the path graph Pn, (b.) the cycle graph Cn, and (c.) the wheel graph Wn, but in
each case, the exact value of one (or both) of ms(G) or cs(G) has not been found.

Question 4.2. If G is a finite simple graph of diameter two, then must it admit an edge cover that is
Kℓ-connected for some integer ℓ ≥ 1 (see [BeDey, Definition 6.27])? In particular, can any edge cover
of G be “amended” to an edge cover that is Kℓ-connected? By what process, if possible?

One other interesting graphical invariant arises in the context of Gaussian graphical models that
enjoy applications in computational biology and sociology (see [XLV] and [HL], respectively). We will
assume toward this end that X = (X1, . . . , Xm) is an m-dimensional random vector with multivariate
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normal (or Gaussian) distributionX ∼ Nm(µ,Σ), whereΣ is anm×m positive-semidefinite covariance
matrix. Consider the finite simple graph G with vertices [m] and edges {i, j} if and only if the random
variables Xi and Xj are conditionally dependent given all other random variables (see [Uhl, Corollary
2.2]). By the paragraph following [GroSul, Problem 1.2], the maximum likelihood threshold is given by

mlt(G) = min{#i.i.d. samples | Σ exists with probability one}.

By [BeDey, Proposition 7.2], the author has demonstrated that ms(R(G)) = mlt(G) if

(1.) G is chordal;

(2.) G is complete;

(3.) G is complete; or

(4.) G has no induced cycles (i.e., G is a tree).

Question 4.3. Let G be the finite simple graph corresponding to an m-dimensional Gaussian random
vector. Let I(G) be the edge ideal of G in R[x1, . . . , xm]. Does it hold that ms(R(G)) = mlt(G)?

Graph theory enjoys delightful applications in biology, chemistry, and computer science that attract
students who are interested in applied mathematics. Likewise, questions such as those mentioned above
entice students who aspire to a career in pure mathematics by interpolating techniques from discrete
mathematics, linear algebra, and ring theory. Graph theory also affords the use of diagrams in tandem
with computer software to carry out experiments that allow students to form and test conjectures; as
such, Questions 4.1 and 4.2 provide excellent opportunities for graduate and undergraduate research.
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