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Definitions and Notation

We will assume throughout this talk that R is a commutative unital ring
with multiplicative identity 1 and Krull dimension dim(R).

We will denote by (R,m, k) the Noetherian local ring R with unique
maximal ideal m and residue field k. We have that

depth(R) = inf{i ≥ 0 | ExtiR(k ,R) ̸= 0}.

We say that a Noetherian local ring (R,m, k) is Cohen-Macaulay if its
depth and Krull dimension coincide, i.e., depth(R) = dim(R). We refer to

type(R) = dimk(Ext
depth(R)
R (k ,R)) as the Cohen-Macaulay type of R.

We say that a Cohen-Macaulay local ring R is Gorenstein if type(R) = 1.
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Definitions and Notation

We say that a finitely generated module ωR over a Noetherian local ring
(R,m, k) is a canonical module of R provided that

(1.) ωR has Cohen-Macaulay type 1, i.e., dimk(Ext
depth(ωR)
R (k , ωR)) = 1;

(2.) ωR is maximal Cohen-Macaulay, i.e., depth(ωR) = dim(R); and

(3.) ωR has finite injective dimension as an R-module.

A Cohen-Macaulay local ring R is Gorenstein if and only if R admits a
canonical module ωR and ωR

∼= R as R-modules.

For an R-module M, we will denote by M∗ = HomR(M,R) the dual of M
and by M∨ = HomR(M, ωR) the canonical dual of M.
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Definitions and Notation

We say that a nonzero element x ∈ R is a non-zero divisor if the
multiplication map R → R defined by r 7→ xr is injective.

We define the
total ring of fractions Q(R) = S−1R, where S is the multiplicatively closed
subset of R consisting of all non-zero divisors of R.

We say that a ring extension R ⊆ S is birational if S ⊆ Q(R).

Let M be an R-module. If M ⊗R Q(R) is a free Q(R)-module, then the
rank of M is the number of summands of Q(R) appearing in M ⊗R Q(R);
otherwise, we say that M does not have a rank. If R is a domain, every
nonzero element of R is a non-zero divisor, hence Q(R) is a field, and the
rank of an R-module is nothing but its dimension as a Q(R)-vector space.
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Definitions and Notation

Let R denote the integral closure of R, i.e.,

R = {α ∈ Q(R) | αn + r1α
n−1 + · · ·+ rn = 0 for some r1, . . . , rn ∈ R}.

We note that R is a birational ring extension of R with dim(R) = dim(R).

We define the conductor (R : R) = {α ∈ Q(R) | αR ⊆ R} of R. Observe
that (R : R) is an ideal of both R and Q(R).
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Definitions and Notation

Let R be a Cohen-Macaulay local ring that admits a canonical module ωR .
We say that R is generically Gorenstein if RP is Gorenstein for every
minimal prime P of R.

The following properties are equivalent.

(1.) ωR has a rank.

(2.) The rank of ωR is 1.

(3.) R is generically Gorenstein.

If any one of the above conditions holds, then ωR can be identified with an
ideal of R that is either equal to R or has height 1.

Conversely, if R is a one-dimensional Noetherian ring that admits a
canonical ideal ωR , then R is generically Gorenstein.
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Definitions and Notation

Let (R,m) be a Noetherian local ring. We denote by R̂ the m-adic
completion of R.

We say that R is analytically unramified if R̂ is reduced,
i.e., if there are no nonzero nilpotent element of R.

By a theorem of Herzog and Kunz, if R is Cohen-Macaulay of dimension
one, then the following properties are equivalent.

(1.) Q(R̂) is Gorenstein.

(2.) R admits a canonical ideal ωR .

Particularly, an analytically unramified ring admits a canonical ideal.
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Definitions and Notation

We refer to ℓR(R/I ) as the colength of an ideal I of R.

We say that I is
regular if it contains a non-zero divisor of R. Every regular ideal of a
one-dimensional Noetherian ring has finite colength. Explicitly, if I
contains a non-zero divisor x , then dim(R/xR) = 0; R/xR is Artinian; and
ℓR(R/xR) is finite. Length is additive on short exact sequences, and R/I
is the homomorphic image of R/xR, hence ℓR(R/I ) is finite.

Let R be a one-dimensional Cohen-Macaulay local ring. If R admits a
canonical ideal ωR , then R is generically Gorenstein, hence ωRP

∼= RP is a
free RP -module of rank 1 for each minimal prime P of R. Because R is
Cohen-Macaulay, the minimal primes of R coincide with the associated
primes of R so that ωR ̸⊆ P for any associated prime P of R. By the Prime
Avoidance Lemma, ωR is regular. Particularly, ωR has finite colength.
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ℓR(R/xR) is finite. Length is additive on short exact sequences, and R/I
is the homomorphic image of R/xR, hence ℓR(R/I ) is finite.

Let R be a one-dimensional Cohen-Macaulay local ring. If R admits a
canonical ideal ωR , then R is generically Gorenstein, hence ωRP

∼= RP is a
free RP -module of rank 1 for each minimal prime P of R. Because R is
Cohen-Macaulay, the minimal primes of R coincide with the associated
primes of R so that ωR ̸⊆ P for any associated prime P of R. By the Prime
Avoidance Lemma, ωR is regular. Particularly, ωR has finite colength.
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Definitions and Notation

Let (R,m) be a Noetherian local ring. We say that an ideal I is m-primary
if there exists an integer n ≫ 0 such that mn ⊆ I ⊆ m.

Crucially, the ideals
of finite colength of R coincide with the m-primary ideals of R. Explicitly,
we have that ℓR(R/I ) is finite if and only if mn(R/I ) = 0 for some integer
n ≫ 0 if and only if mn ⊆ I ⊆ m if and only if I is m-primary.

We say that I is a reduction of m if there exists an integer k ≫ 0 such
that mk+1 = Imk . Every m-primary ideal of a one-dimensional Noetherian
local ring (R,m, k) with infinite residue field k admits a principal
reduction. Explicitly, if I is an m-primary ideal of R, then there exists an
element x ∈ I and an integer n ≫ 0 such that I n+1 = xI n.
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Definitions and Notation

Let (R,m) be a d-dimensional Noetherian local ring. We define the
Hilbert-Samuel multiplicity of a finitely generated R-module M with
respect to an m-primary ideal I of R as

eR(I ,M) = lim
n→∞

(d − 1)!

nd−1
ℓR

(
I nM

I n+1M

)
.

Particularly, if d = 1, then we have that eR(I ,M) = ℓR(I
nM/I n+1M) for

all integers n ≫ 0. We say that a maximal Cohen-Macaulay R-module M
is I -Ulrich provided that eR(I ,M) = ℓR(M/IM). For instance, for any
nonzero ideal I of R and any maximal Cohen-Macaulay R-module M, we
have that I nM is I -Ulrich for all integers n ≫ 0.
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Preliminary Observations

We assume throughout the rest of this talk that (R,m, k) is an analytically
unramified one-dimensional Cohen-Macaulay local ring with infinite residue
field k , total ring of fractions Q(R), integral closure R, and conductor
(R : R) = {α ∈ Q(R) | αR ⊆ R}.

Under these assumptions,

(1.) R admits a canonical ideal ωR , and

(2.) every m-primary ideal of R has a principal reduction.

Considering that ωR is a regular ideal of R, we find that

(3.) the canonical ideal ωR is an m-primary ideal of R.

Generally, every regular ideal of R has finite colength, hence every regular
ideal of R is m-primary, and we find that

(4.) every regular ideal of R has a principal reduction by a regular element.
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The Blow-Up Ring of R with Respect to an Ideal I

Let I be an ideal of R. We define the blow-up

B(I ) =
⋃
n≥0

(I n : I n) = {α ∈ Q(R) | αI n ⊆ I n}

of R with respect to I .

Observe that B(I ) is a birational ring extension of
R. We define the dual blow-up

b(I ) = (R : B(I )) = {α ∈ Q(R) | αB(I ) ⊆ R}.

We note that if I is a regular ideal of R, then (R : B(I )) ∼= HomR(B(I ),R)
as R-modules. Consequently, if B(I ) is a finitely generated R-module,
then b(I ) is a finitely generated R-module, as well.

We refer to B(ωR) as the canonical blow-up of R.
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Stable Ideals

Let I be a regular ideal of R. We say that I is stable if any of the following
equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

(1.) We have that B(I ) = (I : I ).

(2.) There exists an element x ∈ I such that I 2 = xI .

(3.) There exists a regular element x ∈ I such that I
x is a ring.

(4.) There exists a regular element x ∈ I such that B(I ) = I
x .

Particularly, if I is stable, then B(I ) = I
x is finitely generated as an

R-module, hence b(I ) is finitely generated as an R-module.
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Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n. Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals. On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n. Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals. On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n. Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals. On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n. Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals. On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n.

Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals. On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n. Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals.

On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

(1.) There exists an integer n ≫ 0 such that I n is stable.

(2.) We have that I k is stable for all integers k ≥ n.

(3.) We have that I n ∼= I k as R-modules for all integers k ≥ n.

(4.) We have that I k is I -Ulrich for all integers k ≥ n.

We outline the proof. If I is regular, then there exists a regular element
x ∈ I and an integer n ≫ 0 such that I n+1 = xI n. Consequently, we find
that B(I ) = (I n : I n) by general properties of colon ideals. On the other
hand, we have that B(I n) = B(I ) for all integers n ≥ 1.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 14 / 35



The Stable Class and the Trace of an Ideal

Let I be a regular ideal of R. By the previous lemma, there exists an
integer n ≫ 0 such that I n is stable.

Consequently, we may define the
stable class of I to be the ideal sI = I n such that n is the smallest positive
integer such that I n is stable. Particularly, ωR is a regular ideal of R,
hence the canonical stable class sωR

is well-defined.

We define the trace of an R-module M as

tr(M) =
∑
φ∈M∗

φ(M) = {φ(x) | x ∈ M and φ ∈ M∗}.

We note that tr(M) is an ideal of R, and we have that I ⊆ tr(I ) for every
ideal I of R. We say that I is a trace ideal if equality holds.

If I is a regular ideal of R, then b(I ) = tr(B(I )) (cf. [2, Remark 2.3]).
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The Blow-Up, the Stable Class, and (Canonical) Duality

Proposition (cf. [2, Proposition 2.8]).

Let I be a regular ideal of R. The following properties hold.

(1.) We have that B(I ) ∼= sI as R-modules.

(2.) We have that B(I ) is Gorenstein if and only if B(I ) ∼= B(I )∨ if and
only if sI ∼= s∨I , where −∨ = HomR(−, ωR) is the canonical dual.

(3.) We have that sωR
∼= tr(sωR

)∗ ∼= (R : b(ωR)).

Proof.

Property (1.) holds by [5, Lemma 1.3] and [2, Lemma 2.6]. Observe that
B(I ) = R[I n/xn], hence the canonical map R → B(I ) is a local ring
homomorphism of one-dimensional Cohen-Macaulay local rings, and B(I )
admits a canonical module B(I )∨; this shows property (2.).
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The Blow-Up, the Stable Class, and (Canonical) Duality

Proof.

Last, we will establish that sωR
∼= tr(sωR

)∗ ∼= (R : b(ωR)). We have that

s∗ωR
= HomR(B(ωR),R) ∼= b(ωR) = tr(B(ωR)) = tr(sωR

).

By [1, Corollary 4.29], the canonical stable class sωR
is reflexive, hence we

conclude that sωR
= s∗∗ωR

∼= tr(sωR
)∗ = b(ωR)

∗ ∼= (R : b(ωR)). QED.
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Detecting Gorensteinness from the Canonical Blow-Up

Theorem (cf. [2, Theorem 2.9]).

The following properties are equivalent.

(1.) We have that B(ωR) = R.

(2.) We have that b(ωR) = R.

(3.) R is Gorenstein.

Proof.

We will establish that b(ωR) = R implies that R is Gorenstein. By [1,
Corollary 4.7], it suffices to show that R is ωR -Ulrich. Observe that
R = b(ωR) = (R : B(ωR)) = (R : sωR

). On the other hand, we have that
R = b(ωR) = tr(B(ωR)) = tr(B(sωR

)) ⊆ tr(sωR
) ⊆ R. By [4, Proposition

2.4], we conclude that sωR
= RsωR

= (R : sωR
)sωR

= tr(sωR
) = R. QED.
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Equivalent Conditions for Gorenstein Canonical Blow-Up

Corollary (cf. [2, Corollary 2.10]).

The following properties are equivalent.

(1.) B(ωR) is Gorenstein.

(2.) We have that sωR
∼= s∨ωR

.

(3.) We have that sωR
is self-dual.

(4.) We have that tr(sωR
) is stable.

Proof.

Conditions (1.) and (2.) are equivalent by [2, Proposition 2.8]. By [2,
Lemma 2.6], we have that sωR

is ωR -Ulrich, from which it follows that
s∗ωR

= HomR(sωR
,R) ∼= HomR(sωR

, ωR) = s∨ωR
by [1, Corollary 4.27]. Last,

(3.) and (4.) are equivalent by [6, Corollary 4.10]. QED.
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The Gorenstein Canonical Blow-Up (GCB) Property

We say that R has the Gorenstein canonical blow-up (GCB) property if
B(ωR) is Gorenstein.

We may also say that R is GCB.

Recall that a one-dimensional Cohen-Macaulay local ring is Arf if every
integrally closed regular ideal is stable. By [6, Theorem 7.4], our ring R is
Arf if and only if every regular trace ideal is stable. Particularly, if R is Arf,
then the regular trace ideal tr(sωR

) is stable.

Corollary (cf. [2, Corollary 2.13]).

If R is Arf, then R is GCB.
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Nearly Gorenstein and Almost Gorenstein Rings

Let (S ,m) be a one-dimensional Cohen-Macaulay local ring such that S is
S-module-finite and S admits a canonical module S ⊆ C ⊆ S . We say that
S is almost Gorenstein if any of the following equivalent conditions holds.

(1.) We have that ℓS(S/S) = ℓS(S/(S : S)) + r(S)− 1.

(2.) We have that r(S) = ℓS(C/S) + 1.

(3.) We have that mC = m.

(4.) We have that C ⊆ (m : m).

Observe that if mC = m, then m = tr(m) = tr(mC ) = m tr(C ) ⊆ tr(C ).
We say that S is nearly Gorenstein if it only holds tr(C ) ⊇ m, hence every
almost Gorenstein ring is nearly Gorenstein.
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Nearly Gorenstein and Almost Gorenstein Rings

Proposition (cf. [2, Proposition 2.18]).

Suppose that R is finitely generated as an R-module, e.g., R is reduced. If
R has minimal multiplicity, then the following conditions are equivalent.

(1.) R is nearly Gorenstein

(2.) R is almost Gorenstein.

Further, if either of these conditions holds, then R is GCB.

Proof.

Conditions (1.) and (2.) are equivalent by [6, Theorem 6.6] or [6,
Corollary 8.4], so it suffices to show that (2.) implies that R is GCB. If R
is Gorenstein, then B(ωR) = R is Gorenstein. Consequently, we may
assume that R is almost Gorenstein but not Gorenstein.
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Nearly Gorenstein and Almost Gorenstein Rings

Proof.

By [4, Exercise 4.6.14], if R has minimal multiplicity, then m is stable.

If R
is nearly Gorenstein, then tr(sωR

) = tr(B(ωR)) ⊇ m. We claim that
tr(sωR

) = m, from which it follows that tr(sωR
) is stable, hence B(ωR) is

Gorenstein. On the contrary, if R = tr(sωR
) = tr(B(ωR)) = b(ωR), then R

must be Gorenstein — a contradiction. QED.
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An Almost Gorenstein Ring That Is Not GCB

Our hypothesis that R has minimal multiplicity cannot be dropped.

Example (cf. [2, Proposition 4.18]).

Consider the numerical semigroup ring R = k[[t4, t7, t9]] for an infinite field
k . One can show that the underlying numerical semigroup
S = Z≥0⟨4, 7, 9⟩ is almost symmetric, hence R is almost Gorenstein;
however, we have that B(ωR) = k[[t4, t5, t7]] is not Gorenstein.
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however, we have that B(ωR) = k[[t4, t5, t7]] is not Gorenstein.
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A GCB Ring of Minimal Multiplicity That Is Not AG

Even more, there exist GCB rings of minimal multiplicity that are not
almost Gorenstein (and hence not nearly Gorenstein).

Example (cf. [2, Remark 2.19]).

Consider the numerical semigroup ring R = k[[t3, t7, t8]] for an infinite field
k . Observe that the underlying numerical semigroup S = Z≥0⟨3, 7, 8⟩ has
maximal embedding dimension, hence R has minimal multiplicity. One can
show that B(ωR) = k[[t]], hence R is GCB; however, the numerical
semigroup S is not almost symmetric, hence R is not almost Gorenstein.
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Connections to Numerical Semigroups

Let a1, . . . , an be pairwise relatively prime positive integers. Let
S = Z≥0⟨a1, . . . , an⟩ be numerical semigroup generated by a1, . . . , an. By
Bézout’s Theorem, we have that Z≥0 \ S is finite, hence we may consider
the largest positive integer not contained in S .

We refer to this as the
Frobenius number F(S) of S ; the pseudo-Frobenius numbers of S are

PF(S) = {n ∈ Z≥0 \ S | n + s ∈ S for all elements s ∈ S \ {0}}.
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Connections to Numerical Semigroups

Proposition (cf. [2, Proposition 5.3]).

Let K be an infinite field. Let R = K [[ts | s ∈ S ]] be the numerical
semigroup ring associated to the numerical semigroup S .

(1.) R admits a canonical ideal ωR .

(2.) We have that

B(ωR) = R[[tF(S)−x | x ∈ PF(S)]].

We say that S is divisive if F(S)− 1 ∈ PF(S) (i.e., B(ωR) is regular).
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Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Familiar Classes of GCB Rings

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local
ring with infinite residue field. If R any of these hold, then R is GCB.

(1.) R is Arf.

(2.) R is nearly Gorenstein rings of minimal multiplicity.

(3.) R is almost Gorenstein rings of minimal multiplicity.

(4.) R is a divisive numerical semigroup ring.

(5.) R is a far-flung Gorenstein numerical semigroup ring.

(6.) R is a numerical semigroup ring of multiplicity ≤ 3.

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 November 2021 28 / 35



Questions
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