Canonical Blow-Up of One-Dimensional Singularities

Dylan C. Beck (with Hailong Dao)

University of Kansas

21 November 2021

Dylan C. Beck (University of Kansas) Canonical Blow-Up of 1D Singularities 21 No

2/35

We will denote by (R, \mathfrak{m}, k) the Noetherian local ring R with unique maximal ideal \mathfrak{m} and residue field k.

We will denote by (R, \mathfrak{m}, k) the Noetherian local ring R with unique maximal ideal \mathfrak{m} and residue field k. We have that

 $depth(R) = \inf\{i \ge 0 \mid Ext_R^i(k, R) \neq 0\}.$

We will denote by (R, \mathfrak{m}, k) the Noetherian local ring R with unique maximal ideal \mathfrak{m} and residue field k. We have that

 $depth(R) = \inf\{i \ge 0 \mid Ext_R^i(k, R) \neq 0\}.$

We say that a Noetherian local ring (R, \mathfrak{m}, k) is *Cohen-Macaulay* if its depth and Krull dimension coincide, i.e., depth $(R) = \dim(R)$.

We will denote by (R, \mathfrak{m}, k) the Noetherian local ring R with unique maximal ideal \mathfrak{m} and residue field k. We have that

$$depth(R) = \inf\{i \ge 0 \mid Ext_R^i(k, R) \neq 0\}.$$

We say that a Noetherian local ring (R, \mathfrak{m}, k) is Cohen-Macaulay if its depth and Krull dimension coincide, i.e., depth $(R) = \dim(R)$. We refer to type $(R) = \dim_k(\operatorname{Ext}_R^{\operatorname{depth}(R)}(k, R))$ as the Cohen-Macaulay type of R.

We will denote by (R, \mathfrak{m}, k) the Noetherian local ring R with unique maximal ideal \mathfrak{m} and residue field k. We have that

 $depth(R) = \inf\{i \ge 0 \mid Ext_R^i(k, R) \neq 0\}.$

We say that a Noetherian local ring (R, \mathfrak{m}, k) is Cohen-Macaulay if its depth and Krull dimension coincide, i.e., depth $(R) = \dim(R)$. We refer to type $(R) = \dim_k(\operatorname{Ext}_R^{\operatorname{depth}(R)}(k, R))$ as the Cohen-Macaulay type of R.

We say that a Cohen-Macaulay local ring R is Gorenstein if type(R) = 1.

• ω_R has Cohen-Macaulay type 1, i.e., dim_k(Ext_R^{depth(ω_R)(k, ω_R)) = 1;}

- ω_R has Cohen-Macaulay type 1, i.e., dim_k(Ext_R^{depth(ω_R)(k, ω_R)) = 1;}
- **2** ω_R is maximal Cohen-Macaulay, i.e., depth $(\omega_R) = \dim(R)$; and

- ω_R has Cohen-Macaulay type 1, i.e., dim_k(Ext_R^{depth(ω_R)(k, ω_R)) = 1;}
- **a** ω_R is maximal Cohen-Macaulay, i.e., depth $(\omega_R) = \dim(R)$; and
- ω_R has finite injective dimension as an *R*-module.

- ω_R has Cohen-Macaulay type 1, i.e., dim_k(Ext_R^{depth(ω_R)(k, ω_R)) = 1;}
- **2** ω_R is maximal Cohen-Macaulay, i.e., depth $(\omega_R) = \dim(R)$; and
- ω_R has finite injective dimension as an *R*-module.

A Cohen-Macaulay local ring R is Gorenstein if and only if R admits a canonical module ω_R and $\omega_R \cong R$ as R-modules.

- ω_R has Cohen-Macaulay type 1, i.e., dim_k(Ext_R^{depth(ω_R)(k, ω_R)) = 1;}
- **2** ω_R is maximal Cohen-Macaulay, i.e., depth $(\omega_R) = \dim(R)$; and
- ω_R has finite injective dimension as an *R*-module.

A Cohen-Macaulay local ring R is Gorenstein if and only if R admits a canonical module ω_R and $\omega_R \cong R$ as R-modules.

For an *R*-module *M*, we will denote by $M^* = \text{Hom}_R(M, R)$ the *dual* of *M* and by $M^{\vee} = \text{Hom}_R(M, \omega_R)$ the *canonical dual* of *M*.

3

3/35

We say that a nonzero element $x \in R$ is a *non-zero divisor* if the multiplication map $R \to R$ defined by $r \mapsto xr$ is injective.

4 / 35

We say that a ring extension $R \subseteq S$ is *birational* if $S \subseteq Q(R)$.

We say that a ring extension $R \subseteq S$ is *birational* if $S \subseteq Q(R)$.

Let *M* be an *R*-module. If $M \otimes_R Q(R)$ is a free Q(R)-module, then the rank of *M* is the number of summands of Q(R) appearing in $M \otimes_R Q(R)$;

We say that a ring extension $R \subseteq S$ is *birational* if $S \subseteq Q(R)$.

Let *M* be an *R*-module. If $M \otimes_R Q(R)$ is a free Q(R)-module, then the rank of *M* is the number of summands of Q(R) appearing in $M \otimes_R Q(R)$; otherwise, we say that *M* does not have a rank.

We say that a ring extension $R \subseteq S$ is *birational* if $S \subseteq Q(R)$.

Let M be an R-module. If $M \otimes_R Q(R)$ is a free Q(R)-module, then the rank of M is the number of summands of Q(R) appearing in $M \otimes_R Q(R)$; otherwise, we say that M does not have a rank. If R is a domain, every nonzero element of R is a non-zero divisor, hence Q(R) is a field, and the rank of an R-module is nothing but its dimension as a Q(R)-vector space.

 $\overline{R} = \{ \alpha \in Q(R) \mid \alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0 \text{ for some } r_1, \dots, r_n \in R \}.$

$$\overline{R} = \{ \alpha \in Q(R) \mid \alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0 \text{ for some } r_1, \dots, r_n \in R \}.$$

We note that \overline{R} is a birational ring extension of R with dim $(R) = \dim(\overline{R})$.

5/35

$$\overline{R} = \{ \alpha \in Q(R) \mid \alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0 \text{ for some } r_1, \dots, r_n \in R \}.$$

We note that \overline{R} is a birational ring extension of R with dim $(R) = \dim(\overline{R})$. We define the *conductor* $(R : \overline{R}) = \{ \alpha \in Q(R) \mid \alpha \overline{R} \subseteq R \}$ of R.

$$\overline{R} = \{ \alpha \in Q(R) \mid \alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0 \text{ for some } r_1, \dots, r_n \in R \}.$$

We note that \overline{R} is a birational ring extension of R with dim $(R) = \dim(\overline{R})$. We define the *conductor* $(R : \overline{R}) = \{\alpha \in Q(R) \mid \alpha \overline{R} \subseteq R\}$ of R. Observe that $(R : \overline{R})$ is an ideal of both R and Q(R). Let *R* be a Cohen-Macaulay local ring that admits a canonical module ω_R . We say that *R* is *generically Gorenstein* if R_P is Gorenstein for every minimal prime *P* of *R*.

 ω_R has a rank.

- ω_R has a rank.
- Solution The rank of ω_R is 1.

- ω_R has a rank.
- **2** The rank of ω_R is 1.
- B is generically Gorenstein.

- ω_R has a rank.
- Solution The rank of ω_R is 1.
- B is generically Gorenstein.

If any one of the above conditions holds, then ω_R can be identified with an ideal of R that is either equal to R or has height 1.

- ω_R has a rank.
- Solution The rank of ω_R is 1.
- B is generically Gorenstein.

If any one of the above conditions holds, then ω_R can be identified with an ideal of R that is either equal to R or has height 1.

Conversely, if R is a one-dimensional Noetherian ring that admits a canonical ideal ω_R , then R is generically Gorenstein.

Let (R, \mathfrak{m}) be a Noetherian local ring. We denote by \widehat{R} the \mathfrak{m} -adic completion of R.

7/35

By a theorem of Herzog and Kunz, if R is Cohen-Macaulay of dimension one, then the following properties are equivalent.

By a theorem of Herzog and Kunz, if R is Cohen-Macaulay of dimension one, then the following properties are equivalent.

• $Q(\widehat{R})$ is Gorenstein.

By a theorem of Herzog and Kunz, if R is Cohen-Macaulay of dimension one, then the following properties are equivalent.

- $Q(\widehat{R})$ is Gorenstein.
- **2** R admits a canonical ideal ω_R .

By a theorem of Herzog and Kunz, if R is Cohen-Macaulay of dimension one, then the following properties are equivalent.

- $Q(\widehat{R})$ is Gorenstein.
- **2** R admits a canonical ideal ω_R .

Particularly, an analytically unramified ring admits a canonical ideal.
We refer to $\ell_R(R/I)$ as the *colength* of an ideal I of R.

We refer to $\ell_R(R/I)$ as the *colength* of an ideal I of R. We say that I is *regular* if it contains a non-zero divisor of R.

We refer to $\ell_R(R/I)$ as the *colength* of an ideal I of R. We say that I is *regular* if it contains a non-zero divisor of R. Every regular ideal of a one-dimensional Noetherian ring has finite colength.

We refer to $\ell_R(R/I)$ as the *colength* of an ideal *I* of *R*. We say that *I* is *regular* if it contains a non-zero divisor of *R*. Every regular ideal of a one-dimensional Noetherian ring has finite colength. Explicitly, if *I* contains a non-zero divisor *x*, then dim(R/xR) = 0; R/xR is Artinian; and $\ell_R(R/xR)$ is finite.

Let *R* be a one-dimensional Cohen-Macaulay local ring. If *R* admits a canonical ideal ω_R , then *R* is generically Gorenstein, hence $\omega_{R_P} \cong R_P$ is a free R_P -module of rank 1 for each minimal prime *P* of *R*.

Let *R* be a one-dimensional Cohen-Macaulay local ring. If *R* admits a canonical ideal ω_R , then *R* is generically Gorenstein, hence $\omega_{R_P} \cong R_P$ is a free R_P -module of rank 1 for each minimal prime *P* of *R*. Because *R* is Cohen-Macaulay, the minimal primes of *R* coincide with the associated primes of *R* so that $\omega_R \not\subseteq P$ for any associated prime *P* of *R*.

Let R be a one-dimensional Cohen-Macaulay local ring. If R admits a canonical ideal ω_R , then R is generically Gorenstein, hence $\omega_{R_P} \cong R_P$ is a free R_P -module of rank 1 for each minimal prime P of R. Because R is Cohen-Macaulay, the minimal primes of R coincide with the associated primes of R so that $\omega_R \not\subseteq P$ for any associated prime P of R. By the Prime Avoidance Lemma, ω_R is regular.

Let R be a one-dimensional Cohen-Macaulay local ring. If R admits a canonical ideal ω_R , then R is generically Gorenstein, hence $\omega_{R_P} \cong R_P$ is a free R_P -module of rank 1 for each minimal prime P of R. Because R is Cohen-Macaulay, the minimal primes of R coincide with the associated primes of R so that $\omega_R \not\subseteq P$ for any associated prime P of R. By the Prime Avoidance Lemma, ω_R is regular. Particularly, ω_R has finite colength.

Let (R, \mathfrak{m}) be a Noetherian local ring. We say that an ideal I is \mathfrak{m} -primary if there exists an integer $n \gg 0$ such that $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$.

Let (R, \mathfrak{m}) be a Noetherian local ring. We say that an ideal I is \mathfrak{m} -primary if there exists an integer $n \gg 0$ such that $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$. Crucially, the ideals of finite colength of R coincide with the \mathfrak{m} -primary ideals of R.

Let (R, \mathfrak{m}) be a Noetherian local ring. We say that an ideal I is \mathfrak{m} -primary if there exists an integer $n \gg 0$ such that $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$. Crucially, the ideals of finite colength of R coincide with the \mathfrak{m} -primary ideals of R. Explicitly, we have that $\ell_R(R/I)$ is finite if and only if $\mathfrak{m}^n(R/I) = 0$ for some integer $n \gg 0$ if and only if $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$ if and only if I is \mathfrak{m} -primary.

Let (R, \mathfrak{m}) be a Noetherian local ring. We say that an ideal I is \mathfrak{m} -primary if there exists an integer $n \gg 0$ such that $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$. Crucially, the ideals of finite colength of R coincide with the \mathfrak{m} -primary ideals of R. Explicitly, we have that $\ell_R(R/I)$ is finite if and only if $\mathfrak{m}^n(R/I) = 0$ for some integer $n \gg 0$ if and only if $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$ if and only if I is \mathfrak{m} -primary.

We say that I is a *reduction* of \mathfrak{m} if there exists an integer $k \gg 0$ such that $\mathfrak{m}^{k+1} = I\mathfrak{m}^k$.

Let (R, \mathfrak{m}) be a Noetherian local ring. We say that an ideal I is \mathfrak{m} -primary if there exists an integer $n \gg 0$ such that $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$. Crucially, the ideals of finite colength of R coincide with the \mathfrak{m} -primary ideals of R. Explicitly, we have that $\ell_R(R/I)$ is finite if and only if $\mathfrak{m}^n(R/I) = 0$ for some integer $n \gg 0$ if and only if $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$ if and only if I is \mathfrak{m} -primary.

We say that I is a *reduction* of \mathfrak{m} if there exists an integer $k \gg 0$ such that $\mathfrak{m}^{k+1} = I\mathfrak{m}^k$. Every \mathfrak{m} -primary ideal of a one-dimensional Noetherian local ring (R, \mathfrak{m}, k) with infinite residue field k admits a principal reduction.

Let (R, \mathfrak{m}) be a Noetherian local ring. We say that an ideal I is \mathfrak{m} -primary if there exists an integer $n \gg 0$ such that $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$. Crucially, the ideals of finite colength of R coincide with the \mathfrak{m} -primary ideals of R. Explicitly, we have that $\ell_R(R/I)$ is finite if and only if $\mathfrak{m}^n(R/I) = 0$ for some integer $n \gg 0$ if and only if $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$ if and only if I is \mathfrak{m} -primary.

We say that *I* is a *reduction* of m if there exists an integer $k \gg 0$ such that $\mathfrak{m}^{k+1} = I\mathfrak{m}^k$. Every m-primary ideal of a one-dimensional Noetherian local ring (R, \mathfrak{m}, k) with infinite residue field k admits a principal reduction. Explicitly, if *I* is an m-primary ideal of *R*, then there exists an element $x \in I$ and an integer $n \gg 0$ such that $I^{n+1} = xI^n$.

9/35

$$e_R(I,M) = \lim_{n\to\infty} \frac{(d-1)!}{n^{d-1}} \ell_R\left(\frac{I^n M}{I^{n+1}M}\right).$$

$$e_R(I,M) = \lim_{n\to\infty} \frac{(d-1)!}{n^{d-1}} \ell_R\left(\frac{I^n M}{I^{n+1}M}\right).$$

Particularly, if d = 1, then we have that $e_R(I, M) = \ell_R(I^n M / I^{n+1} M)$ for all integers $n \gg 0$.

10 / 35

$$e_R(I,M) = \lim_{n\to\infty} \frac{(d-1)!}{n^{d-1}} \ell_R\left(\frac{I^n M}{I^{n+1}M}\right).$$

Particularly, if d = 1, then we have that $e_R(I, M) = \ell_R(I^n M / I^{n+1} M)$ for all integers $n \gg 0$. We say that a maximal Cohen-Macaulay *R*-module *M* is *I*-*Ulrich* provided that $e_R(I, M) = \ell_R(M / IM)$.

$$e_R(I,M) = \lim_{n\to\infty} \frac{(d-1)!}{n^{d-1}} \ell_R\left(\frac{I^n M}{I^{n+1}M}\right).$$

Particularly, if d = 1, then we have that $e_R(I, M) = \ell_R(I^n M/I^{n+1}M)$ for all integers $n \gg 0$. We say that a maximal Cohen-Macaulay *R*-module *M* is *I*-Ulrich provided that $e_R(I, M) = \ell_R(M/IM)$. For instance, for any nonzero ideal *I* of *R* and any maximal Cohen-Macaulay *R*-module *M*, we have that $I^n M$ is *I*-Ulrich for all integers $n \gg 0$.

We assume throughout the rest of this talk that (R, \mathfrak{m}, k) is an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field k, total ring of fractions Q(R), integral closure \overline{R} , and conductor $(R:\overline{R}) = \{\alpha \in Q(R) \mid \alpha \overline{R} \subseteq R\}.$

We assume throughout the rest of this talk that (R, \mathfrak{m}, k) is an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field k, total ring of fractions Q(R), integral closure \overline{R} , and conductor $(R : \overline{R}) = \{ \alpha \in Q(R) \mid \alpha \overline{R} \subseteq R \}$. Under these assumptions,

- *R* admits a canonical ideal ω_R , and
- every \mathfrak{m} -primary ideal of R has a principal reduction.

We assume throughout the rest of this talk that (R, \mathfrak{m}, k) is an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field k, total ring of fractions Q(R), integral closure \overline{R} , and conductor $(R:\overline{R}) = \{\alpha \in Q(R) \mid \alpha \overline{R} \subseteq R\}$. Under these assumptions,

- *R* admits a canonical ideal ω_R , and
- every m-primary ideal of R has a principal reduction.

Considering that ω_R is a regular ideal of R, we find that

• the canonical ideal ω_R is an m-primary ideal of R.

We assume throughout the rest of this talk that (R, \mathfrak{m}, k) is an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field k, total ring of fractions Q(R), integral closure \overline{R} , and conductor $(R : \overline{R}) = \{ \alpha \in Q(R) \mid \alpha \overline{R} \subseteq R \}$. Under these assumptions,

- *R* admits a canonical ideal ω_R , and
- every m-primary ideal of R has a principal reduction.

Considering that ω_R is a regular ideal of R, we find that

• the canonical ideal ω_R is an m-primary ideal of R.

Generally, every regular ideal of R has finite colength, hence every regular ideal of R is m-primary, and we find that

• every regular ideal of R has a principal reduction by a regular element.

The Blow-Up Ring of R with Respect to an Ideal I

Let I be an ideal of R. We define the blow-up

$$B(I) = \bigcup_{n \ge 0} (I^n : I^n) = \{ \alpha \in Q(R) \mid \alpha I^n \subseteq I^n \}$$

of R with respect to I.

The Blow-Up Ring of R with Respect to an Ideal I

Let I be an ideal of R. We define the blow-up

$$B(I) = \bigcup_{n \ge 0} (I^n : I^n) = \{ \alpha \in Q(R) \mid \alpha I^n \subseteq I^n \}$$

of R with respect to I. Observe that B(I) is a birational ring extension of R.

$$B(I) = \bigcup_{n \ge 0} (I^n : I^n) = \{ \alpha \in Q(R) \mid \alpha I^n \subseteq I^n \}$$

of R with respect to I. Observe that B(I) is a birational ring extension of R. We define the *dual blow-up*

$$b(I) = (R : B(I)) = \{ \alpha \in Q(R) \mid \alpha B(I) \subseteq R \}.$$

$$B(I) = \bigcup_{n \ge 0} (I^n : I^n) = \{ \alpha \in Q(R) \mid \alpha I^n \subseteq I^n \}$$

of R with respect to I. Observe that B(I) is a birational ring extension of R. We define the *dual blow-up*

$$b(I) = (R : B(I)) = \{ \alpha \in Q(R) \mid \alpha B(I) \subseteq R \}.$$

We note that if I is a regular ideal of R, then $(R : B(I)) \cong \text{Hom}_R(B(I), R)$ as R-modules.

$$B(I) = \bigcup_{n \ge 0} (I^n : I^n) = \{ \alpha \in Q(R) \mid \alpha I^n \subseteq I^n \}$$

of R with respect to I. Observe that B(I) is a birational ring extension of R. We define the *dual blow-up*

$$b(I) = (R : B(I)) = \{ \alpha \in Q(R) \mid \alpha B(I) \subseteq R \}.$$

We note that if I is a regular ideal of R, then $(R : B(I)) \cong \text{Hom}_R(B(I), R)$ as R-modules. Consequently, if B(I) is a finitely generated R-module, then b(I) is a finitely generated R-module, as well.

$$B(I) = \bigcup_{n \ge 0} (I^n : I^n) = \{ \alpha \in Q(R) \mid \alpha I^n \subseteq I^n \}$$

of R with respect to I. Observe that B(I) is a birational ring extension of R. We define the *dual blow-up*

$$b(I) = (R : B(I)) = \{ \alpha \in Q(R) \mid \alpha B(I) \subseteq R \}.$$

We note that if I is a regular ideal of R, then $(R : B(I)) \cong \text{Hom}_R(B(I), R)$ as R-modules. Consequently, if B(I) is a finitely generated R-module, then b(I) is a finitely generated R-module, as well.

We refer to $B(\omega_R)$ as the *canonical blow-up* of *R*.

Let I be a regular ideal of R. We say that I is *stable* if any of the following equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

Let I be a regular ideal of R. We say that I is *stable* if any of the following equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

We have that
$$B(I) = (I : I)$$

(

Let I be a regular ideal of R. We say that I is *stable* if any of the following equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

We have that
$$B(I) = (I : I)$$
.

There exists an element $x \in I$ such that $I^2 = xI$.

Let I be a regular ideal of R. We say that I is *stable* if any of the following equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

• We have that
$$B(I) = (I : I)$$
.

- There exists an element $x \in I$ such that $I^2 = xI$.
- **Or a set up a set of a set o**

13/35

Let I be a regular ideal of R. We say that I is *stable* if any of the following equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

• We have that
$$B(I) = (I : I)$$
.

- There exists an element $x \in I$ such that $I^2 = xI$.
- There exists a regular element $x \in I$ such that $\frac{I}{x}$ is a ring.
- There exists a regular element $x \in I$ such that $B(I) = \frac{I}{x}$.

(

Let I be a regular ideal of R. We say that I is *stable* if any of the following equivalent conditions hold (cf. [5, Definition 1.1 and Lemma 1.3]).

• We have that
$$B(I) = (I : I)$$
.

There exists an element
$$x \in I$$
 such that $I^2 = xI$.

- There exists a regular element $x \in I$ such that $\frac{I}{x}$ is a ring.
- There exists a regular element $x \in I$ such that $B(I) = \frac{I}{x}$.

Particularly, if *I* is stable, then $B(I) = \frac{I}{x}$ is finitely generated as an *R*-module, hence b(I) is finitely generated as an *R*-module.

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

• There exists an integer $n \gg 0$ such that I^n is stable.
Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

- There exists an integer $n \gg 0$ such that I^n is stable.
- **2** We have that I^k is stable for all integers $k \ge n$.

Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

- There exists an integer $n \gg 0$ such that I^n is stable.
- **2** We have that I^k is stable for all integers $k \ge n$.
- We have that $I^n \cong I^k$ as *R*-modules for all integers $k \ge n$.

14/35

Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

- There exists an integer $n \gg 0$ such that I^n is stable.
- **4** We have that I^k is stable for all integers $k \ge n$.
- We have that $I^n \cong I^k$ as *R*-modules for all integers $k \ge n$.
- We have that I^k is *I*-Ulrich for all integers $k \ge n$.

Stable Ideals

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

- There exists an integer $n \gg 0$ such that I^n is stable.
- **4** We have that I^k is stable for all integers $k \ge n$.
- We have that $I^n \cong I^k$ as *R*-modules for all integers $k \ge n$.
- We have that I^k is *I*-Ulrich for all integers $k \ge n$.

We outline the proof. If *I* is regular, then there exists a regular element $x \in I$ and an integer $n \gg 0$ such that $I^{n+1} = xI^n$.

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

- There exists an integer $n \gg 0$ such that I^n is stable.
- **4** We have that I^k is stable for all integers $k \ge n$.
- We have that $I^n \cong I^k$ as *R*-modules for all integers $k \ge n$.
- We have that I^k is *I*-Ulrich for all integers $k \ge n$.

We outline the proof. If I is regular, then there exists a regular element $x \in I$ and an integer $n \gg 0$ such that $I^{n+1} = xI^n$. Consequently, we find that $B(I) = (I^n : I^n)$ by general properties of colon ideals.

Lemma (cf. [2, Lemma 2.6]).

Every regular ideal I of R satisfies the following properties.

- There exists an integer $n \gg 0$ such that I^n is stable.
- **4** We have that I^k is stable for all integers $k \ge n$.
- We have that $I^n \cong I^k$ as *R*-modules for all integers $k \ge n$.
- We have that I^k is *I*-Ulrich for all integers $k \ge n$.

We outline the proof. If I is regular, then there exists a regular element $x \in I$ and an integer $n \gg 0$ such that $I^{n+1} = xI^n$. Consequently, we find that $B(I) = (I^n : I^n)$ by general properties of colon ideals. On the other hand, we have that $B(I^n) = B(I)$ for all integers $n \ge 1$.

Let I be a regular ideal of R. By the previous lemma, there exists an integer $n \gg 0$ such that I^n is stable.

15 / 35

Let *I* be a regular ideal of *R*. By the previous lemma, there exists an integer $n \gg 0$ such that I^n is stable. Consequently, we may define the stable class of *I* to be the ideal $\mathfrak{s}_I = I^n$ such that *n* is the smallest positive integer such that I^n is stable.

We define the *trace* of an R-module M as

$$\operatorname{tr}(M) = \sum_{\varphi \in M^*} \varphi(M) = \{\varphi(x) \mid x \in M \text{ and } \varphi \in M^*\}.$$

We define the *trace* of an R-module M as

$$\operatorname{tr}(M) = \sum_{\varphi \in M^*} \varphi(M) = \{\varphi(x) \mid x \in M \text{ and } \varphi \in M^*\}.$$

We note that tr(M) is an ideal of R, and we have that $I \subseteq tr(I)$ for every ideal I of R.

We define the *trace* of an R-module M as

$$\operatorname{tr}(M) = \sum_{\varphi \in M^*} \varphi(M) = \{\varphi(x) \mid x \in M \text{ and } \varphi \in M^*\}.$$

We note that tr(M) is an ideal of R, and we have that $I \subseteq tr(I)$ for every ideal I of R. We say that I is a *trace ideal* if equality holds.

We define the *trace* of an R-module M as

$$\operatorname{tr}(M) = \sum_{\varphi \in M^*} \varphi(M) = \{\varphi(x) \mid x \in M \text{ and } \varphi \in M^*\}.$$

We note that tr(M) is an ideal of R, and we have that $I \subseteq tr(I)$ for every ideal I of R. We say that I is a *trace ideal* if equality holds.

If I is a regular ideal of R, then b(I) = tr(B(I)) (cf. [2, Remark 2.3]).

Proposition (cf. [2, Proposition 2.8]).

Let I be a regular ideal of R. The following properties hold.

• We have that $B(I) \cong \mathfrak{s}_I$ as *R*-modules.

Proposition (cf. [2, Proposition 2.8]).

Let I be a regular ideal of R. The following properties hold.

- We have that $B(I) \cong \mathfrak{s}_I$ as *R*-modules.
- We have that B(I) is Gorenstein if and only if B(I) ≅ B(I)[∨] if and only if s_I ≅ s_I[∨], where -[∨] = Hom_R(-, ω_R) is the canonical dual.

Proposition (cf. [2, Proposition 2.8]).

Let I be a regular ideal of R. The following properties hold.

- We have that $B(I) \cong \mathfrak{s}_I$ as *R*-modules.
- We have that B(I) is Gorenstein if and only if $B(I) \cong B(I)^{\vee}$ if and only if $\mathfrak{s}_I \cong \mathfrak{s}_I^{\vee}$, where $-^{\vee} = \operatorname{Hom}_R(-, \omega_R)$ is the canonical dual.
- We have that $\mathfrak{s}_{\omega_R} \cong \operatorname{tr}(\mathfrak{s}_{\omega_R})^* \cong (R : b(\omega_R)).$

16 / 35

Proposition (cf. [2, Proposition 2.8]).

Let I be a regular ideal of R. The following properties hold.

- We have that $B(I) \cong \mathfrak{s}_I$ as *R*-modules.
- We have that B(I) is Gorenstein if and only if B(I) ≅ B(I)[∨] if and only if s_I ≅ s_I[∨], where -[∨] = Hom_R(-, ω_R) is the canonical dual.
- We have that $\mathfrak{s}_{\omega_R} \cong \operatorname{tr}(\mathfrak{s}_{\omega_R})^* \cong (R : b(\omega_R)).$

Proof.

Property (1.) holds by [5, Lemma 1.3] and [2, Lemma 2.6].

< 3 >

Proposition (cf. [2, Proposition 2.8]).

Let I be a regular ideal of R. The following properties hold.

- We have that $B(I) \cong \mathfrak{s}_I$ as *R*-modules.
- We have that B(I) is Gorenstein if and only if B(I) ≅ B(I)[∨] if and only if s_I ≅ s_I[∨], where -[∨] = Hom_R(-, ω_R) is the canonical dual.

• We have that
$$\mathfrak{s}_{\omega_R} \cong \operatorname{tr}(\mathfrak{s}_{\omega_R})^* \cong (R : b(\omega_R)).$$

Proof.

Property (1.) holds by [5, Lemma 1.3] and [2, Lemma 2.6]. Observe that $B(I) = R[I^n/x^n]$, hence the canonical map $R \to B(I)$ is a local ring homomorphism of one-dimensional Cohen-Macaulay local rings, and B(I) admits a canonical module $B(I)^{\vee}$; this shows property (2.).

イロト イヨト イヨト

Proof.

Last, we will establish that $\mathfrak{s}_{\omega_R} \cong \operatorname{tr}(\mathfrak{s}_{\omega_R})^* \cong (R : b(\omega_R))$. We have that

$$\mathfrak{s}^*_{\omega_R} = \operatorname{Hom}_R(B(\omega_R), R) \cong b(\omega_R) = \operatorname{tr}(B(\omega_R)) = \operatorname{tr}(\mathfrak{s}_{\omega_R})$$

Proof.

Last, we will establish that $\mathfrak{s}_{\omega_R} \cong \operatorname{tr}(\mathfrak{s}_{\omega_R})^* \cong (R : b(\omega_R))$. We have that

$$\mathfrak{s}_{\omega_R}^* = \operatorname{Hom}_R(B(\omega_R), R) \cong b(\omega_R) = \operatorname{tr}(B(\omega_R)) = \operatorname{tr}(\mathfrak{s}_{\omega_R})$$

By [1, Corollary 4.29], the canonical stable class \mathfrak{s}_{ω_R} is reflexive, hence we conclude that $\mathfrak{s}_{\omega_R} = \mathfrak{s}_{\omega_R}^{**} \cong \operatorname{tr}(\mathfrak{s}_{\omega_R})^* = b(\omega_R)^* \cong (R : b(\omega_R))$. QED.

Theorem (cf. [2, Theorem 2.9]).

The following properties are equivalent.

• We have that $B(\omega_R) = R$.

Theorem (cf. [2, Theorem 2.9]).

- We have that $B(\omega_R) = R$.
- **2** We have that $b(\omega_R) = R$.

Theorem (cf. [2, Theorem 2.9]).

- We have that $B(\omega_R) = R$.
- **2** We have that $b(\omega_R) = R$.
- *R* is Gorenstein.

Theorem (cf. [2, Theorem 2.9]).

The following properties are equivalent.

- We have that $B(\omega_R) = R$.
- We have that $b(\omega_R) = R$.
- *R* is Gorenstein.

Proof.

We will establish that $b(\omega_R) = R$ implies that R is Gorenstein.

Theorem (cf. [2, Theorem 2.9]).

The following properties are equivalent.

- We have that $B(\omega_R) = R$.
- We have that $b(\omega_R) = R$.
- *R* is Gorenstein.

Proof.

We will establish that $b(\omega_R) = R$ implies that R is Gorenstein. By [1, Corollary 4.7], it suffices to show that R is ω_R -Ulrich.

Theorem (cf. [2, Theorem 2.9]).

The following properties are equivalent.

- We have that $B(\omega_R) = R$.
- We have that $b(\omega_R) = R$.
- *R* is Gorenstein.

Proof.

We will establish that $b(\omega_R) = R$ implies that R is Gorenstein. By [1, Corollary 4.7], it suffices to show that R is ω_R -Ulrich. Observe that $R = b(\omega_R) = (R : B(\omega_R)) = (R : \mathfrak{s}_{\omega_R}).$

18 / 35

→ ∃ →

< □ > < @ >

Theorem (cf. [2, Theorem 2.9]).

The following properties are equivalent.

- We have that $B(\omega_R) = R$.
- We have that $b(\omega_R) = R$.
- *R* is Gorenstein.

Proof.

We will establish that $b(\omega_R) = R$ implies that R is Gorenstein. By [1, Corollary 4.7], it suffices to show that R is ω_R -Ulrich. Observe that $R = b(\omega_R) = (R : B(\omega_R)) = (R : \mathfrak{s}_{\omega_R})$. On the other hand, we have that $R = b(\omega_R) = \operatorname{tr}(B(\omega_R)) = \operatorname{tr}(B(\mathfrak{s}_{\omega_R})) \subseteq \operatorname{tr}(\mathfrak{s}_{\omega_R}) \subseteq R$. By [4, Proposition 2.4], we conclude that $\mathfrak{s}_{\omega_R} = R\mathfrak{s}_{\omega_R} = (R : \mathfrak{s}_{\omega_R})\mathfrak{s}_{\omega_R} = \operatorname{tr}(\mathfrak{s}_{\omega_R}) = R$. QED.

< □ > < □ > < □ > < □ > < □ > < □ >

Corollary (cf. [2, Corollary 2.10]).

The following properties are equivalent.

• $B(\omega_R)$ is Gorenstein.

Corollary (cf. [2, Corollary 2.10]).

- **9** $B(\omega_R)$ is Gorenstein.

Corollary (cf. [2, Corollary 2.10]).

- $B(\omega_R)$ is Gorenstein.
- **4** We have that $\mathfrak{s}_{\omega_R} \cong \mathfrak{s}_{\omega_R}^{\vee}$.
- We have that \mathfrak{s}_{ω_R} is self-dual.

Corollary (cf. [2, Corollary 2.10]).

- $B(\omega_R)$ is Gorenstein.
- **4** We have that $\mathfrak{s}_{\omega_R} \cong \mathfrak{s}_{\omega_R}^{\vee}$.
- **We have that** \mathfrak{s}_{ω_R} is self-dual.
- We have that $tr(\mathfrak{s}_{\omega_R})$ is stable.

Corollary (cf. [2, Corollary 2.10]).

The following properties are equivalent.

- **9** $B(\omega_R)$ is Gorenstein.
- **4** We have that $\mathfrak{s}_{\omega_R} \cong \mathfrak{s}_{\omega_R}^{\vee}$.
- **We have that** \mathfrak{s}_{ω_R} is self-dual.
- We have that $tr(\mathfrak{s}_{\omega_R})$ is stable.

Proof.

Conditions (1.) and (2.) are equivalent by [2, Proposition 2.8].

Corollary (cf. [2, Corollary 2.10]).

The following properties are equivalent.

- **9** $B(\omega_R)$ is Gorenstein.
- **We have that** \mathfrak{s}_{ω_R} is self-dual.
- We have that $tr(\mathfrak{s}_{\omega_R})$ is stable.

Proof.

Conditions (1.) and (2.) are equivalent by [2, Proposition 2.8]. By [2, Lemma 2.6], we have that \mathfrak{s}_{ω_R} is ω_R -Ulrich, from which it follows that $\mathfrak{s}_{\omega_R}^* = \operatorname{Hom}_R(\mathfrak{s}_{\omega_R}, R) \cong \operatorname{Hom}_R(\mathfrak{s}_{\omega_R}, \omega_R) = \mathfrak{s}_{\omega_R}^{\vee}$ by [1, Corollary 4.27].

Corollary (cf. [2, Corollary 2.10]).

The following properties are equivalent.

- **9** $B(\omega_R)$ is Gorenstein.
- **(a)** We have that $\mathfrak{s}_{\omega_R} \cong \mathfrak{s}_{\omega_R}^{\vee}$.
- **We have that** \mathfrak{s}_{ω_R} is self-dual.
- We have that $tr(\mathfrak{s}_{\omega_R})$ is stable.

Proof.

Conditions (1.) and (2.) are equivalent by [2, Proposition 2.8]. By [2, Lemma 2.6], we have that \mathfrak{s}_{ω_R} is ω_R -Ulrich, from which it follows that $\mathfrak{s}_{\omega_R}^* = \operatorname{Hom}_R(\mathfrak{s}_{\omega_R}, R) \cong \operatorname{Hom}_R(\mathfrak{s}_{\omega_R}, \omega_R) = \mathfrak{s}_{\omega_R}^{\vee}$ by [1, Corollary 4.27]. Last, (3.) and (4.) are equivalent by [6, Corollary 4.10]. QED.

We say that R has the Gorenstein canonical blow-up (GCB) property if $B(\omega_R)$ is Gorenstein.

We say that R has the Gorenstein canonical blow-up (GCB) property if $B(\omega_R)$ is Gorenstein. We may also say that R is GCB.
Recall that a one-dimensional Cohen-Macaulay local ring is *Arf* if every integrally closed regular ideal is stable.

Recall that a one-dimensional Cohen-Macaulay local ring is Arf if every integrally closed regular ideal is stable. By [6, Theorem 7.4], our ring R is Arf if and only if every regular trace ideal is stable.

Recall that a one-dimensional Cohen-Macaulay local ring is Arf if every integrally closed regular ideal is stable. By [6, Theorem 7.4], our ring R is Arf if and only if every regular trace ideal is stable. Particularly, if R is Arf, then the regular trace ideal $tr(\mathfrak{s}_{\omega_R})$ is stable.

Recall that a one-dimensional Cohen-Macaulay local ring is Arf if every integrally closed regular ideal is stable. By [6, Theorem 7.4], our ring R is Arf if and only if every regular trace ideal is stable. Particularly, if R is Arf, then the regular trace ideal $tr(\mathfrak{s}_{\omega_R})$ is stable.

Corollary (cf. [2, Corollary 2.13]).

If R is Arf, then R is GCB.

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is S-module-finite and S admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that S is almost Gorenstein if any of the following equivalent conditions holds.

We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1.$

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is S-module-finite and S admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that S is almost Gorenstein if any of the following equivalent conditions holds.

• We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1$.

• We have that
$$r(S) = \ell_S(C/S) + 1$$
.

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is S-module-finite and S admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that S is almost Gorenstein if any of the following equivalent conditions holds.

• We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1$.

• We have that
$$r(S) = \ell_S(C/S) + 1$$
.

We have that $\mathfrak{m}C = \mathfrak{m}$.

21/35

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is S-module-finite and S admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that S is almost Gorenstein if any of the following equivalent conditions holds.

• We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1$.

• We have that
$$r(S) = \ell_S(C/S) + 1$$
.

- We have that $\mathfrak{m}C = \mathfrak{m}$.
- We have that $C \subseteq (\mathfrak{m} : \mathfrak{m})$.

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is S-module-finite and S admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that S is almost Gorenstein if any of the following equivalent conditions holds.

• We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1$.

• We have that
$$r(S) = \ell_S(C/S) + 1$$
.

- We have that $\mathfrak{m}C = \mathfrak{m}$.
- We have that $C \subseteq (\mathfrak{m} : \mathfrak{m})$.

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is S-module-finite and S admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that S is almost Gorenstein if any of the following equivalent conditions holds.

• We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1$.

3 We have that
$$r(S) = \ell_S(C/S) + 1$$
.

- We have that $\mathfrak{m}C = \mathfrak{m}$.
- We have that $C \subseteq (\mathfrak{m} : \mathfrak{m})$.

Observe that if $\mathfrak{m}C = \mathfrak{m}$, then $\mathfrak{m} = tr(\mathfrak{m}) = tr(\mathfrak{m}C) = \mathfrak{m}tr(C) \subseteq tr(C)$.

Let (S, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring such that \overline{S} is *S*-module-finite and *S* admits a canonical module $S \subseteq C \subseteq \overline{S}$. We say that *S* is *almost Gorenstein* if any of the following equivalent conditions holds.

• We have that $\ell_S(\overline{S}/S) = \ell_S(S/(S:\overline{S})) + r(S) - 1$.

3 We have that
$$r(S) = \ell_S(C/S) + 1$$
.

- We have that $\mathfrak{m}C = \mathfrak{m}$.
- We have that $C \subseteq (\mathfrak{m} : \mathfrak{m})$.

Observe that if $\mathfrak{m}C = \mathfrak{m}$, then $\mathfrak{m} = tr(\mathfrak{m}C) = \mathfrak{m}tr(C) \subseteq tr(C)$. We say that S is *nearly Gorenstein* if it only holds $tr(C) \supseteq \mathfrak{m}$, hence every almost Gorenstein ring is nearly Gorenstein.

Proposition (cf. [2, Proposition 2.18]).

Suppose that \overline{R} is finitely generated as an *R*-module, e.g., *R* is reduced. If *R* has minimal multiplicity, then the following conditions are equivalent.

R is nearly Gorenstein

Proposition (cf. [2, Proposition 2.18]).

Suppose that \overline{R} is finitely generated as an *R*-module, e.g., *R* is reduced. If *R* has minimal multiplicity, then the following conditions are equivalent.

- R is nearly Gorenstein
- *R* is almost Gorenstein.

Proposition (cf. [2, Proposition 2.18]).

Suppose that \overline{R} is finitely generated as an *R*-module, e.g., *R* is reduced. If *R* has minimal multiplicity, then the following conditions are equivalent.

- R is nearly Gorenstein
- *R* is almost Gorenstein.

Further, if either of these conditions holds, then R is GCB.

Proposition (cf. [2, Proposition 2.18]).

Suppose that \overline{R} is finitely generated as an *R*-module, e.g., *R* is reduced. If *R* has minimal multiplicity, then the following conditions are equivalent.

- R is nearly Gorenstein
- *R* is almost Gorenstein.

Further, if either of these conditions holds, then R is GCB.

Proof.

Conditions (1.) and (2.) are equivalent by [6, Theorem 6.6] or [6, Corollary 8.4], so it suffices to show that (2.) implies that R is GCB.

イロト イヨト イヨト

Proposition (cf. [2, Proposition 2.18]).

Suppose that \overline{R} is finitely generated as an *R*-module, e.g., *R* is reduced. If *R* has minimal multiplicity, then the following conditions are equivalent.

- R is nearly Gorenstein
- *R* is almost Gorenstein.

Further, if either of these conditions holds, then R is GCB.

Proof.

Conditions (1.) and (2.) are equivalent by [6, Theorem 6.6] or [6, Corollary 8.4], so it suffices to show that (2.) implies that R is GCB. If Ris Gorenstein, then $B(\omega_R) = R$ is Gorenstein. Consequently, we may assume that R is almost Gorenstein but not Gorenstein.

Proof.

By [4, Exercise 4.6.14], if R has minimal multiplicity, then \mathfrak{m} is stable.

Proof.

By [4, Exercise 4.6.14], if R has minimal multiplicity, then \mathfrak{m} is stable. If R is nearly Gorenstein, then $\operatorname{tr}(\mathfrak{s}_{\omega_R}) = \operatorname{tr}(B(\omega_R)) \supseteq \mathfrak{m}$.

Proof.

By [4, Exercise 4.6.14], if R has minimal multiplicity, then \mathfrak{m} is stable. If R is nearly Gorenstein, then $\operatorname{tr}(\mathfrak{s}_{\omega_R}) = \operatorname{tr}(B(\omega_R)) \supseteq \mathfrak{m}$. We claim that $\operatorname{tr}(\mathfrak{s}_{\omega_R}) = \mathfrak{m}$, from which it follows that $\operatorname{tr}(\mathfrak{s}_{\omega_R})$ is stable, hence $B(\omega_R)$ is Gorenstein.

23 / 35

Proof.

By [4, Exercise 4.6.14], if R has minimal multiplicity, then \mathfrak{m} is stable. If R is nearly Gorenstein, then $\operatorname{tr}(\mathfrak{s}_{\omega_R}) = \operatorname{tr}(B(\omega_R)) \supseteq \mathfrak{m}$. We claim that $\operatorname{tr}(\mathfrak{s}_{\omega_R}) = \mathfrak{m}$, from which it follows that $\operatorname{tr}(\mathfrak{s}_{\omega_R})$ is stable, hence $B(\omega_R)$ is Gorenstein. On the contrary, if $R = \operatorname{tr}(\mathfrak{s}_{\omega_R}) = \operatorname{tr}(B(\omega_R)) = b(\omega_R)$, then R must be Gorenstein — a contradiction. QED.

Example (cf. [2, Proposition 4.18]).

Consider the numerical semigroup ring $R = k[t^4, t^7, t^9]$ for an infinite field k.

24 / 35

Example (cf. [2, Proposition 4.18]).

Consider the numerical semigroup ring $R = k[t^4, t^7, t^9]$ for an infinite field k. One can show that the underlying numerical semigroup $S = \mathbb{Z}_{\geq 0} \langle 4, 7, 9 \rangle$ is almost symmetric, hence R is almost Gorenstein;

Example (cf. [2, Proposition 4.18]).

Consider the numerical semigroup ring $R = k[t^4, t^7, t^9]$ for an infinite field k. One can show that the underlying numerical semigroup $S = \mathbb{Z}_{\geq 0}\langle 4, 7, 9 \rangle$ is almost symmetric, hence R is almost Gorenstein; however, we have that $B(\omega_R) = k[t^4, t^5, t^7]$ is not Gorenstein.

24 / 35

Example (cf. [2, Remark 2.19]).

Consider the numerical semigroup ring $R = k[t^3, t^7, t^8]$ for an infinite field k.

Example (cf. [2, Remark 2.19]).

Consider the numerical semigroup ring $R = k[[t^3, t^7, t^8]]$ for an infinite field k. Observe that the underlying numerical semigroup $S = \mathbb{Z}_{\geq 0}\langle 3, 7, 8 \rangle$ has maximal embedding dimension, hence R has minimal multiplicity.

Example (cf. [2, Remark 2.19]).

Consider the numerical semigroup ring $R = k[[t^3, t^7, t^8]]$ for an infinite field k. Observe that the underlying numerical semigroup $S = \mathbb{Z}_{\geq 0}\langle 3, 7, 8 \rangle$ has maximal embedding dimension, hence R has minimal multiplicity. One can show that $B(\omega_R) = k[[t]]$, hence R is GCB;

Example (cf. [2, Remark 2.19]).

Consider the numerical semigroup ring $R = k[t^3, t^7, t^8]$ for an infinite field k. Observe that the underlying numerical semigroup $S = \mathbb{Z}_{\geq 0}\langle 3, 7, 8 \rangle$ has maximal embedding dimension, hence R has minimal multiplicity. One can show that $B(\omega_R) = k[t]$, hence R is GCB; however, the numerical semigroup S is not almost symmetric, hence R is not almost Gorenstein.

Let a_1, \ldots, a_n be pairwise relatively prime positive integers. Let $S = \mathbb{Z}_{\geq 0}\langle a_1, \ldots, a_n \rangle$ be numerical semigroup generated by a_1, \ldots, a_n . By Bézout's Theorem, we have that $\mathbb{Z}_{\geq 0} \setminus S$ is finite, hence we may consider the largest positive integer not contained in S. Let a_1, \ldots, a_n be pairwise relatively prime positive integers. Let $S = \mathbb{Z}_{\geq 0} \langle a_1, \ldots, a_n \rangle$ be numerical semigroup generated by a_1, \ldots, a_n . By Bézout's Theorem, we have that $\mathbb{Z}_{\geq 0} \setminus S$ is finite, hence we may consider the largest positive integer not contained in *S*. We refer to this as the *Frobenius number* F(*S*) of *S*; Let a_1, \ldots, a_n be pairwise relatively prime positive integers. Let $S = \mathbb{Z}_{\geq 0} \langle a_1, \ldots, a_n \rangle$ be numerical semigroup generated by a_1, \ldots, a_n . By Bézout's Theorem, we have that $\mathbb{Z}_{\geq 0} \setminus S$ is finite, hence we may consider the largest positive integer not contained in *S*. We refer to this as the *Frobenius number* F(*S*) of *S*; the *pseudo-Frobenius numbers* of *S* are

 $\mathsf{PF}(S) = \{ n \in \mathbb{Z}_{\geq 0} \setminus S \mid n + s \in S \text{ for all elements } s \in S \setminus \{0\} \}.$

Proposition (cf. [2, Proposition 5.3]).

Let K be an infinite field. Let $R = K[[t^s | s \in S]]$ be the numerical semigroup ring associated to the numerical semigroup S.

9 *R* admits a canonical ideal ω_R .

Proposition (cf. [2, Proposition 5.3]).

Let K be an infinite field. Let $R = K \llbracket t^s \mid s \in S \rrbracket$ be the numerical semigroup ring associated to the numerical semigroup S.

- **(b)** R admits a canonical ideal ω_R .
- We have that

$$B(\omega_R) = R\llbracket t^{\mathsf{F}(S)-x} \mid x \in \mathsf{PF}(S) \rrbracket.$$

Proposition (cf. [2, Proposition 5.3]).

Let K be an infinite field. Let $R = K \llbracket t^s \mid s \in S \rrbracket$ be the numerical semigroup ring associated to the numerical semigroup S.

- **Q** R admits a canonical ideal ω_R .
- We have that

$$B(\omega_R) = R\llbracket t^{\mathsf{F}(S)-x} \mid x \in \mathsf{PF}(S) \rrbracket.$$

We say that S is *divisive* if $F(S) - 1 \in PF(S)$ (i.e., $B(\omega_R)$ is regular).

Familiar Classes of GCB Rings

We conclude with the following summary.

э
We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field. If R any of these hold, then R is GCB.

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field. If R any of these hold, then R is GCB.

R is Arf.

R is nearly Gorenstein rings of minimal multiplicity.

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field. If R any of these hold, then R is GCB.

- *R* is nearly Gorenstein rings of minimal multiplicity.
- *R* is almost Gorenstein rings of minimal multiplicity.

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field. If R any of these hold, then R is GCB.

- Q R is nearly Gorenstein rings of minimal multiplicity.
- Q R is almost Gorenstein rings of minimal multiplicity.
- Q R is a divisive numerical semigroup ring.

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field. If R any of these hold, then R is GCB.

- Q R is nearly Gorenstein rings of minimal multiplicity.
- Q R is almost Gorenstein rings of minimal multiplicity.
- Q R is a divisive numerical semigroup ring.
- \bigcirc R is a far-flung Gorenstein numerical semigroup ring.

We conclude with the following summary.

Theorem (cf. [2, Theorem 2.20]).

Let R be an analytically unramified one-dimensional Cohen-Macaulay local ring with infinite residue field. If R any of these hold, then R is GCB.

- Q R is nearly Gorenstein rings of minimal multiplicity.
- Q R is almost Gorenstein rings of minimal multiplicity.
- Q R is a divisive numerical semigroup ring.
- *R* is a far-flung Gorenstein numerical semigroup ring.
- *R* is a numerical semigroup ring of multiplicity ≤ 3 .

Questions

Ξ.

<ロト < 四ト < 三ト < 三ト

I express my gratitude to my academic advisor and co-author Hailong Dao for his insight, expertise, and guidance in collaboration on this paper. I thank Souvik Dey for his unfailing advice in our countless conversations. Last, I would like to thank the creators of the GAP System, which I have used extensively for computations with numerical semigroups.

- A. Assi and P.A. García-Sánchez, *Numerical Semigroups and Applications*, hal-01085760, 2014.
- D.C. Beck and H. Dao, *Canonical Blow-Up of One-Dimensional Singularities*, in progress.
- V. Barucci and R. Fröberg, *One-Dimensional Almost Gorenstein Rings*, Journal of Algebra, **188**, 418-442, 1997.
- W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics, **39**, Cambridge University Press, 1993.
- H. Dao, *Reflexive modules, self-dual modules, and Arf rings*, arXiv preprint, arXiv:2105.12240v1, 2021.
- H. Dao, H. Lindo, Stable trace ideals and applications, arXiv preprint, arXiv:2106.07064v1, 2021.

< □ > < 凸

References

- H. Dao, S. Maitra, P. Sridhar, *On reflexive and I-Ulrich modules over curve singularities*, arXiv preprint, arXiv:2101.02641v5, 2021.
- M. Delgado, P.A. García-Sánchez, and J. Morais, numericalsgps: a GAP System package on numerical semigroups, http://www.gap-system.org/Packages/numericalsgps.html.
- M. Delgado, P.A. García-Sánchez, and A.M. Robles-Pérez, Numerical semigroups with a given set of pseudo-Frobenius numbers, LMS J. Comput. Math., 19(1), 186-205, 2016.
- R. Fröberg, *The Frobenius number of some semigroups*, Commutative Algebra, **22**, 6021-6024, 1994.
- R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics, 16, The University of Chicago Press, 1984.

32 / 35

References

- P.A. García-Sánchez and J.C. Rosales, Numerical semigroups generated by intervals, Pacific Journal of Mathematics, 191, 1999.
- P.A. García-Sánchez and J.C. Rosales, *Numerical Semigroups*, Developments in Mathematics, **20**, Springer, 2009.
- S. Goto and K. Watanabe, *On graded rings, I*, Journal of the Mathematical Society of Japan, **30**, 1978.
- J. Herzog, *Generators and relations of abelian semigroups and semigroup rings*, LSU Historical Dissertations and Theses, **1663**, 1969.
- J. Herzog and E. Kunz, *Der kanonische Modul eines Cohen-Macaulay Rings*, Springer Lecture Notes in Mathematics, **238**, 1971.
- J. Herzog, T. Hibi, and D.I. Stamate, *The trace of the canonical module*, Israel Journal of Mathematics, **233**, 133-165, 2019.

- J. Herzog, T. Hibi, and D.I. Stamate, *Canonical trace ideal and residue for numerical semigroup rings*, Semigroup Forum, **103**, 550-566, 2021.
- J. Herzog, S. Kumashiro, and D.I. Stamate, *The tiny trace ideals of the canonical modules in Cohen-Macaulay rings of dimension one*, arXiv preprint, arXiv 2106.09404v1, 2021.
- C. Huneke and I. Swanson, Integral closure of ideals, rings and modules, London Mathematical Society Lecture Note Series 336.
- T. Kobayashi and R. Takahashi, *Rings whose ideals are isomorphic to trace ideals*, Mathematische Nachrichten, **292**(10), 2252-2261, 2019.
- J. Lipman, *Stable ideals and Arf rings*, American Journal of Mathematics, **93**, 649-685, 1971.

- A. Moscariello and F. Strazzanti, Nearly Gorenstein vs almost Gorenstein affine monomial curves, Mediterranean Journal of Mathematics, 18(127), 2021.

M. Nagata, *On the structure of complete local rings*, Nagoya Mathematical Journal, **1**, 63-70, 1950.