
Double Integration over Rectangles

Recall from Calculus I that we define the definite integral of a
function f (x) on an interval [a, b] to be the limit∫ b

a
f (x) dx = lim

|∆x |→0

n∑
k=1

f (xk)∆x

of the Riemann sum of some partition xk of [a, b].

Geometrically, the definite integral
∫ b
a f (x) dx gives the signed area of

the region bounded by the graph of f (x) and the x-axis.

Like one would reasonably hope, the idea of the definite integral of
f (x) over a closed interval [a, b] generalizes nicely to the integral of a
function f (x , y) over [a, b]× [c , d ], i.e., a rectangle.
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Double Integration over Rectangles

Given a function f (x , y) such that the quantity

L = lim
||P||→0

m∑
i=1

n∑
j=1

f (Pij)∆x∆y

exists for all possible partitions Pij of the rectangle R = [a, b]× [c , d ],
we say that f (x , y) is (Riemann) integrable with double integral∫∫

R
f (x , y) dA = L.

We interpret the quantity L as the signed volume of the region
enclosed by the graph of f (x , y) and the rectangle R in the xy -plane.
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Properties of Double Integrals over Rectangles

Given that f (x , y) is a continuous functions on a rectangle R, we
have that f (x , y) is (Riemann) integrable on R.

Particularly, if f (x , y)
is differentiable on a rectangle R, then it is integrable on R.

Given Riemann integrable functions f (x , y) and g(x , y) on a
rectangle R, we have that

∫∫
R is a linear functional, i.e.,

1
∫∫

R[f (x , y) + g(x , y)] dA =
∫∫

R f (x , y) dA +
∫∫

R g(x , y) dA and

2
∫∫

R C · f (x , y) dA = C ·
∫∫

R
f (x , y) dA for all constants C .

Fubini’s Theorem allows use to practically compute double integrals.
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Properties of Double Integrals over Rectangles

Fubini’s Theorem

Given a continuous function f (x , y) over a rectangle R = [a, b]× [c , d ],
the following quantities are equal.

1

∫∫
R
f (x , y) dA

2

∫ x=b

x=a

(∫ y=d

y=c
f (x , y) dy

)
dx

3

∫ y=d

y=c

(∫ x=b

x=a
f (x , y) dx

)
dy
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Computing Double Integrals over Rectangles

True (a.) or False (b.)
The signed volume of the region bounded by the function
f (x , y) = sin x and the rectangle R = [−1, 1]× [0, 1] is zero.

(a.) True. We have that∫∫
R
f (x , y) dA =

∫ 1

0

∫ 1

−1
sin x dx dy =

∫ 1

0

[
− cos x

]1
−1

dy =

∫ 1

0
0 dy

since cos x is an even function, i.e., cos(−1) = cos(1).
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Double Integration over General Regions

Certainly, the method of double integration would not be useful if it
were limited to rectangles; however, it is possible to extend double
integration to more general regions.

Particularly, the double integral
of a continuous function on a closed domain D exists whenever the
boundary of D is closed, simple, and piecewise smooth.

If D is vertically simple, i.e., a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x),∫∫
D
f (x , y) dA =

∫ b

a

∫ f2(x)

f1(x)
f (x , y) dy dx .

If D is horizontally simple, i.e., c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y),∫∫
D
f (x , y) dA =

∫ d

c

∫ g2(y)

g1(y)
f (x , y) dx dy .
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Computing Double Integrals over General Regions

Choosing the Best Orientation

Compute the double integral

∫∫
D

sin x

x
dA on the closed domain

D = {(x , y) | y ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We note that D is described as horizontally simple, hence we have that∫∫
D

sin x

x
dA =

∫ 1

0

∫ 1

y

sin x

x
dx dy .

But this function has no elementary antiderivative; however, if we consider
D as defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ x (vertically simple), we have that∫∫

D

sin x

x
dA =

∫ 1

0

∫ x

0

sin x

x
dy dx =

∫ 1

0
sin x dx = 1− cos(1).
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Computing Double Integrals over General Regions

Reversing the Best Orientation

Compute the double integral

∫∫
D
xey

4
dA on the closed domain

D = {(x , y) | 0 ≤ x ≤ 1 and x2/3 ≤ y ≤ 1}.

We note that D is described as vertically simple, hence we have that∫∫
D
xey

4
dA =

∫ 1

0

∫ 1

x2/3
xey

4
dy dx .

But the function ey
4

has no elementary antiderivative; however, if we
consider D as defined by 0 ≤ x ≤ y3/2 and 0 ≤ y ≤ 1, we have that∫∫

D
xey

4
dA =

∫ 1

0

∫ y3/2

0
xey

4
dx dy =

1

2

∫ 1

0
y3ey

4
dy =

e − 1

8
.
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