Double Integration over Rectangles

@ Recall from Calculus | that we define the definite integral of a
function f(x) on an interval [a, b] to be the limit

/bf(x)dx: lim if(xk)Ax

A
|Ax|—0 1

of the Riemann sum of some partition xx of [a, b].
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Double Integration over Rectangles

@ Recall from Calculus | that we define the definite integral of a
function f(x) on an interval [a, b] to be the limit

/bf(x)dx: lim Zf(xk)Ax

of the Riemann sum of some partition xx of [a, b].

o Geometrically, the definite integral fab f(x) dx gives the signed area of
the region bounded by the graph of f(x) and the x-axis.
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Double Integration over Rectangles

@ Recall from Calculus | that we define the definite integral of a
function f(x) on an interval [a, b] to be the limit

/bf(x)dx: lim if(xk)Ax

|Ax]—0 1
of the Riemann sum of some partition xx of [a, b].

o Geometrically, the definite integral fab f(x) dx gives the signed area of
the region bounded by the graph of f(x) and the x-axis.

@ Like one would reasonably hope, the idea of the definite integral of
f(x) over a closed interval [a, b] generalizes nicely to the integral of a
function f(x,y) over [a, b] x [c,d], i.e., a rectangle.
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Double Integration over Rectangles

e Given a function f(x,y) such that the quantity

HPH%Z}Z f(Py)AxAy

exists for all possible partitions Pj; of the rectangle R = [a, b] X [c, d],
we say that f(x, y) is (Riemann) integrable with double integral

//R f(x,y) dA = L.
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Double Integration over Rectangles

e Given a function f(x,y) such that the quantity

Tl Z;Z FilAxty

exists for all possible partitions Pj; of the rectangle R = [a, b] X [c, d],
we say that f(x, y) is (Riemann) integrable with double integral

//R f(x,y) dA = L.

@ We interpret the quantity L as the signed volume of the region
enclosed by the graph of f(x,y) and the rectangle R in the xy-plane.
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Properties of Double Integrals over Rectangles

@ Given that f(x,y) is a continuous functions on a rectangle R, we
have that f(x, y) is (Riemann) integrable on R.
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Properties of Double Integrals over Rectangles

@ Given that f(x,y) is a continuous functions on a rectangle R, we
have that f(x, y) is (Riemann) integrable on R. Particularly, if f(x,y)
is differentiable on a rectangle R, then it is integrable on R.
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Properties of Double Integrals over Rectangles

@ Given that f(x,y) is a continuous functions on a rectangle R, we
have that f(x, y) is (Riemann) integrable on R. Particularly, if f(x,y)
is differentiable on a rectangle R, then it is integrable on R.

e Given Riemann integrable functions f(x,y) and g(x,y) on a
rectangle R, we have that [ is a linear functional, i.e.,
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Properties of Double Integrals over Rectangles

@ Given that f(x,y) is a continuous functions on a rectangle R, we
have that f(x, y) is (Riemann) integrable on R. Particularly, if f(x,y)
is differentiable on a rectangle R, then it is integrable on R.

e Given Riemann integrable functions f(x,y) and g(x,y) on a
rectangle R, we have that [ is a linear functional, i.e.,

O [[Rlf(x,y) +g(x.y)|dA= [[ f(x,y) dA+ [[ g(x,y) dA and
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Properties of Double Integrals over Rectangles

@ Given that f(x,y) is a continuous functions on a rectangle R, we
have that f(x, y) is (Riemann) integrable on R. Particularly, if f(x,y)
is differentiable on a rectangle R, then it is integrable on R.

e Given Riemann integrable functions f(x,y) and g(x,y) on a
rectangle R, we have that [ is a linear functional, i.e.,

© [Jrlf(xy) +&(x,y)ldA = [[r f(x,y) dA+ [[ g(x,y) dA and
Q [/, C-f(x,y)dA= C- [[5f(x,y)dA for all constants C.
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Properties of Double Integrals over Rectangles

@ Given that f(x,y) is a continuous functions on a rectangle R, we
have that f(x, y) is (Riemann) integrable on R. Particularly, if f(x,y)
is differentiable on a rectangle R, then it is integrable on R.

e Given Riemann integrable functions f(x,y) and g(x,y) on a
rectangle R, we have that [ is a linear functional, i.e.,

© [Jrlf(xy) +&(x,y)ldA = [[r f(x,y) dA+ [[ g(x,y) dA and
Q [/, C-f(x,y)dA= C- [[5f(x,y)dA for all constants C.

@ Fubini’s Theorem allows use to practically compute double integrals.
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Properties of Double Integrals over Rectangles

Fubini's Theorem

Given a continuous function f(x, y) over a rectangle R = [a, b] X [c, d],
the following quantities are equal.

) / /R F(x, y) dA
° [ __b< /yy__d f(x,y)dy> dix
° /:d( [ e
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Computing Double Integrals over Rectangles

True (a.) or False (b.)

The signed volume of the region bounded by the function
f(x,y) = sinx and the rectangle R = [-1,1] x [0,1] is zero.
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Computing Double Integrals over Rectangles

True (a.) or False (b.)

The signed volume of the region bounded by the function
f(x,y) = sinx and the rectangle R = [-1,1] x [0,1] is zero.

(a.) True.
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Computing Double Integrals over Rectangles

True (a.) or False (b.)

The signed volume of the region bounded by the function
f(x,y) = sinx and the rectangle R = [-1,1] x [0,1] is zero.

(a.) True. We have that

// (x,y)dA = //smxdxdy /[—cosx] dy = /Olody

since cos x is an even function, i.e., cos(—1) = cos(1).
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Double Integration over General Regions

o Certainly, the method of double integration would not be useful if it
were limited to rectangles; however, it is possible to extend double
integration to more general regions.
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Double Integration over General Regions

o Certainly, the method of double integration would not be useful if it
were limited to rectangles; however, it is possible to extend double
integration to more general regions. Particularly, the double integral
of a continuous function on a closed domain D exists whenever the
boundary of D is closed, simple, and piecewise smooth.
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Double Integration over General Regions

o Certainly, the method of double integration would not be useful if it
were limited to rectangles; however, it is possible to extend double
integration to more general regions. Particularly, the double integral
of a continuous function on a closed domain D exists whenever the
boundary of D is closed, simple, and piecewise smooth.

o If D is vertically simple, i.e., a < x < b and fi(x) <y < f(x),

b rhi(x)
// f(x,y)dA:/ / f(x,y)dy dx.
D a JA(x)
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Double Integration over General Regions

o Certainly, the method of double integration would not be useful if it
were limited to rectangles; however, it is possible to extend double
integration to more general regions. Particularly, the double integral
of a continuous function on a closed domain D exists whenever the
boundary of D is closed, simple, and piecewise smooth.

o If D is vertically simple, i.e., a < x < b and fi(x) <y < f(x),

b rhi(x)
// f(x,y)dA:/ / f(x,y)dy dx.
D a JA(x)

e If D is horizontally simple, i.e., c <y < d and gi(y) < x < g(y),

[ rocyyan— //g F(x, ) dx dy.
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Computing Double Integrals over General Regions

Choosing the Best Orientation

Compute the double integral // sme dA on the closed domain

D
D={(x,y)ly<x<land0<y <1}

MATH 127 (Sections 15.1 and 15.2) Double Integration The University of Kansas



Computing Double Integrals over General Regions

Choosing the Best Orientation

X

Compute the double integral // st x dA on the closed domain
D
D={(x,y)ly<x<land0<y <1}

We note that D is described as horizontally simple, hence we have that

// smdi:/ / SdeXdy.
D X 0 Jy X
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Computing Double Integrals over General Regions

Choosing the Best Orientation

Compute the double integral // sme dA on the closed domain

D
D={(x,y)ly<x<land0<y <1}

We note that D is described as horizontally simple, hence we have that

// smdi:/ / SdeXdy.
D X 0 Jy X

But this function has no elementary antiderivative;
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Computing Double Integrals over General Regions

Choosing the Best Orientation

Compute the double integral // sme dA on the closed domain

D
D={(x,y)ly<x<land0<y <1}

We note that D is described as horizontally simple, hence we have that

1,1
// smdi:/ / SdeXdy.
D 0 Jy X

But this function has no elementary antiderivative; however, if we consider
D as defined by 0 < x <1 and 0 <y < x (vertically simple), we have that

1 X o 1
// szdA:/ / SlnXdydx:/ sinx dx = 1 — cos(1).
D o Jo X 0
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Computing Double Integrals over General Regions

Reversing the Best Orientation

Compute the double integral // xe”" dA on the closed domain
D
D={(x,y)|0<x<1landx?*3<y<1}.
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Computing Double Integrals over General Regions

Reversing the Best Orientation

Compute the double integral // xe”" dA on the closed domain
D
D={(x,y)|0<x<1landx?*3<y<1}.

We note that D is described as vertically simple, hence we have that

1,1
// xey4dA:/ / xey4dydx.
D 0 Jx2/3
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Computing Double Integrals over General Regions

Reversing the Best Orientation

Compute the double integral // xe”" dA on the closed domain
D
D={(x,y)|0<x<1landx?*3<y<1}.

We note that D is described as vertically simple, hence we have that

1 1
// xey4dA:/ / xey4dydx.
D 0 Jx2/3

But the function e’* has no elementary antiderivative;
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Computing Double Integrals over General Regions

Reversing the Best Orientation

Compute the double integral // xe”" dA on the closed domain
D
D={(x,y)|0<x<1landx?*3<y<1}.

We note that D is described as vertically simple, hence we have that

1 1
// xey4dA:/ / xey4dydx.
D 0 Jx2/3

But the function " has no elementary antiderivative; however, if we
consider D as defined by 0 < x < y‘?’/2 and 0 <y <1, we have that
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