Vector-Valued Functions

- Consider a particle floating around in space.

Vector-Valued Functions

- Consider a particle floating around in space. Each of the coordinates of the particle can be given by a function of time t, i.e., we can write $x=x(t), y=y(t)$, and $z=z(t)$.

Vector-Valued Functions

- Consider a particle floating around in space. Each of the coordinates of the particle can be given by a function of time t, i.e., we can write $x=x(t), y=y(t)$, and $z=z(t)$. Collecting each of these functions in a vector gives a vector-valued function

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} .
$$

Vector-Valued Functions

- Consider a particle floating around in space. Each of the coordinates of the particle can be given by a function of time t, i.e., we can write $x=x(t), y=y(t)$, and $z=z(t)$. Collecting each of these functions in a vector gives a vector-valued function

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

We say that $\mathbf{r}(t)$ is parametrized by t with coordinate functions (or components) $x(t), y(t)$, and $z(t)$.

Vector-Valued Functions

- Consider a particle floating around in space. Each of the coordinates of the particle can be given by a function of time t, i.e., we can write $x=x(t), y=y(t)$, and $z=z(t)$. Collecting each of these functions in a vector gives a vector-valued function

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

We say that $\mathbf{r}(t)$ is parametrized by t with coordinate functions (or components) $x(t), y(t)$, and $z(t)$.

- Observe that a vector-valued function is a function $\mathbb{R} \rightarrow \mathbb{R}^{3}$, hence its domain is a subset of the real numbers.

Vector-Valued Functions

- Consider a particle floating around in space. Each of the coordinates of the particle can be given by a function of time t, i.e., we can write $x=x(t), y=y(t)$, and $z=z(t)$. Collecting each of these functions in a vector gives a vector-valued function

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

We say that $\mathbf{r}(t)$ is parametrized by t with coordinate functions (or components) $x(t), y(t)$, and $z(t)$.

- Observe that a vector-valued function is a function $\mathbb{R} \rightarrow \mathbb{R}^{3}$, hence its domain is a subset of the real numbers. Particularly, the domain of $\mathbf{r}(t)$ is the intersection of the domains of $x(t), y(t)$, and $z(t)$.

Vector-Valued Functions

True (a.) or False (b.)

The domain of $\mathbf{r}(t)=\left\langle\frac{1}{1-t}, \frac{1}{1+t}, e^{-t}\right\rangle$ is $D_{r}=\{t \in \mathbb{R} \mid t \neq \pm 1\}$.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.
(1) We project into the $x y$-plane by setting $z(t)=t=0$.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.
(1) We project into the $x y$-plane by setting $z(t)=t=0$. Observe that as t increases, the curve $\mathbf{r}(t)$ moves clockwise (since $\mathbf{r}\left(\frac{\pi}{2}\right)=\langle-1,0,0\rangle$) from the point $(0,1,0)$ and traces out the unit circle in the $x y$-plane.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.
(1) We project into the $x y$-plane by setting $z(t)=t=0$. Observe that as t increases, the curve $\mathbf{r}(t)$ moves clockwise (since $\mathbf{r}\left(\frac{\pi}{2}\right)=\langle-1,0,0\rangle$) from the point $(0,1,0)$ and traces out the unit circle in the $x y$-plane.
(2) We project into the $x z$-plane by setting $y(t)=\cos t=0$.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.
(1) We project into the $x y$-plane by setting $z(t)=t=0$. Observe that as t increases, the curve $\mathbf{r}(t)$ moves clockwise (since $\mathbf{r}\left(\frac{\pi}{2}\right)=\langle-1,0,0\rangle$) from the point $(0,1,0)$ and traces out the unit circle in the $x y$-plane.
(2) We project into the $x z$-plane by setting $y(t)=\cos t=0$. Observe that as t increases, $\mathbf{r}(t)$ traces the curve $-\sin t$ vertically in the xz-plane.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.
(1) We project into the $x y$-plane by setting $z(t)=t=0$. Observe that as t increases, the curve $\mathbf{r}(t)$ moves clockwise (since $\mathbf{r}\left(\frac{\pi}{2}\right)=\langle-1,0,0\rangle$) from the point $(0,1,0)$ and traces out the unit circle in the $x y$-plane.
(2) We project into the $x z$-plane by setting $y(t)=\cos t=0$. Observe that as t increases, $\mathbf{r}(t)$ traces the curve $-\sin t$ vertically in the xz-plane.
(3) We project into the $y z$-plane by setting $x(t)=-\sin t=0$.

Visualizing Vector-Valued Functions in \mathbb{R}^{3}

- We can describe the image of a vector-valued function in \mathbb{R}^{3} by projecting into the coordinate planes.
- Consider the vector-valued function $\mathbf{r}(t)=\langle-\sin t, \cos t, t\rangle$ for $t \geq 0$.
(1) We project into the $x y$-plane by setting $z(t)=t=0$. Observe that as t increases, the curve $\mathbf{r}(t)$ moves clockwise (since $\mathbf{r}\left(\frac{\pi}{2}\right)=\langle-1,0,0\rangle$) from the point $(0,1,0)$ and traces out the unit circle in the $x y$-plane.
(2) We project into the $x z$-plane by setting $y(t)=\cos t=0$. Observe that as t increases, $\mathbf{r}(t)$ traces the curve $-\sin t$ vertically in the xz-plane.
(3) We project into the $y z$-plane by setting $x(t)=-\sin t=0$. Observe that as t increases, $\mathbf{r}(t)$ traces the curve $\cos t$ vertically in the $y z$-plane.

Parametrization of Curves in \mathbb{R}^{3}

- Given a parametrization of a curve in \mathbb{R}^{3}, we can reproduce the image of the curve by projecting into the coordinate axes.

Parametrization of Curves in \mathbb{R}^{3}

- Given a parametrization of a curve in \mathbb{R}^{3}, we can reproduce the image of the curve by projecting into the coordinate axes. Likewise, given a curve \mathcal{C} in \mathbb{R}^{3}, we can produce a parametrization of \mathcal{C}.

Parametrization of Curves in \mathbb{R}^{3}

- Given a parametrization of a curve in \mathbb{R}^{3}, we can reproduce the image of the curve by projecting into the coordinate axes. Likewise, given a curve \mathcal{C} in \mathbb{R}^{3}, we can produce a parametrization of \mathcal{C}.
- Consider the curve \mathcal{C} obtained by intersecting the surfaces $x^{2}-y^{2}=z-1$ and $x^{2}+y^{2}=4$.

Parametrization of Curves in \mathbb{R}^{3}

- Given a parametrization of a curve in \mathbb{R}^{3}, we can reproduce the image of the curve by projecting into the coordinate axes. Likewise, given a curve \mathcal{C} in \mathbb{R}^{3}, we can produce a parametrization of \mathcal{C}.
- Consider the curve \mathcal{C} obtained by intersecting the surfaces $x^{2}-y^{2}=z-1$ and $x^{2}+y^{2}=4$. Using the usual parametrization in polar coordinates, we have that $x(t)=2 \cos t$ and $y(t)=2 \sin t$.

Parametrization of Curves in \mathbb{R}^{3}

- Given a parametrization of a curve in \mathbb{R}^{3}, we can reproduce the image of the curve by projecting into the coordinate axes. Likewise, given a curve \mathcal{C} in \mathbb{R}^{3}, we can produce a parametrization of \mathcal{C}.
- Consider the curve \mathcal{C} obtained by intersecting the surfaces $x^{2}-y^{2}=z-1$ and $x^{2}+y^{2}=4$. Using the usual parametrization in polar coordinates, we have that $x(t)=2 \cos t$ and $y(t)=2 \sin t$. Consequently, we may solve for $z(t)$ by observing that

$$
z(t)=z=x^{2}-y^{2}+1=4 \cos ^{2} t-4 \sin ^{2} t+1=4 \cos (2 t)+1
$$

Parametrization of Curves in \mathbb{R}^{3}

- Given a parametrization of a curve in \mathbb{R}^{3}, we can reproduce the image of the curve by projecting into the coordinate axes. Likewise, given a curve \mathcal{C} in \mathbb{R}^{3}, we can produce a parametrization of \mathcal{C}.
- Consider the curve \mathcal{C} obtained by intersecting the surfaces $x^{2}-y^{2}=z-1$ and $x^{2}+y^{2}=4$. Using the usual parametrization in polar coordinates, we have that $x(t)=2 \cos t$ and $y(t)=2 \sin t$. Consequently, we may solve for $z(t)$ by observing that

$$
z(t)=z=x^{2}-y^{2}+1=4 \cos ^{2} t-4 \sin ^{2} t+1=4 \cos (2 t)+1
$$

Ultimately, we have that \mathcal{C} is given by the vector-valued function

$$
\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 4 \cos (2 t)+1\rangle
$$

Parametrization of Curves in \mathbb{R}^{3}

Embedding a Circle in \mathbb{R}^{3}, Pt. I

Choose the vector-valued function that parametrizes the circle of radius 3 centered at $(2,6,8)$ and parallel to the $x y$-plane.
(a.) $\mathbf{r}(t)=\langle\sqrt{t-2}, \sqrt{t-6}, t-8\rangle$
(c.) $\mathbf{u}(t)=\langle 2 \cos t, \sin t+6,8\rangle$
(b.) $\mathbf{s}(t)=\langle 3 \cos t+2,3 \sin t+6,8\rangle$
(d.) $\mathbf{v}(t)=3 \mathbf{r}(t)$

Parametrization of Curves in \mathbb{R}^{3}

Embedding a Circle in \mathbb{R}^{3}, Pt. II

Choose the vector-valued function that parametrizes the circle of radius 3 centered at $(2,6,8)$ and parallel to the $x z$-plane.
(a.) $\mathbf{r}(t)=\langle\sqrt{t-2}, t-6, \sqrt{t-8}\rangle$
(c.) $\mathbf{u}(t)=\langle 2 \cos t, 6, \sin t+8\rangle$
(b.) $\mathbf{s}(t)=\langle 3 \cos t+2,6,3 \sin t+8\rangle$
(d.) $\mathbf{v}(t)=3 \mathbf{r}(t)$

Parametrization of Curves in \mathbb{R}^{3}

Embedding an Ellipse in \mathbb{R}^{3}

Choose the vector-valued function that parametrizes the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ centered at $(9,-4,0)$ and parallel to the $x y$-plane.
(a.) $\mathbf{r}(t)=\left\langle\frac{\sqrt{t-9}}{2}, \frac{\sqrt{t+4}}{3}, 0\right\rangle$
(c.) $\mathbf{u}(t)=\langle 2 \cos t+9,3 \sin t-4,0\rangle$
(b.) $\mathbf{s}(t)=\left\langle\frac{\sqrt{t-9}}{2}, \frac{\sqrt{t+4}}{3}, 1\right\rangle$
(d.) $\mathbf{v}(t)=\langle 2 \cos (t-9), 3 \sin (t+4), 1\rangle$

Calculus of Vector-Valued Functions

- Considering that vector-valued functions consist of components that are functions of a single variable, we can extend many of the notions of Calculus I to vector-valued functions.

Calculus of Vector-Valued Functions

- Considering that vector-valued functions consist of components that are functions of a single variable, we can extend many of the notions of Calculus I to vector-valued functions.
- Given a vector-valued function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, we have that

$$
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle
$$

Calculus of Vector-Valued Functions

- Considering that vector-valued functions consist of components that are functions of a single variable, we can extend many of the notions of Calculus I to vector-valued functions.
- Given a vector-valued function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, we have that

$$
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle
$$

- Given a vector-valued function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, we have that

$$
\frac{d}{d t} \mathbf{r}(t)=\left\langle\frac{d}{d t} x(t), \frac{d}{d t} y(t), \frac{d}{d t} z(t)\right\rangle .
$$

