Vector-Valued Functions

o Consider a particle floating around in space.
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o Consider a particle floating around in space. Each of the coordinates
of the particle can be given by a function of time t, i.e., we can write

x = x(t), y = y(t), and z = z(t).
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Vector-Valued Functions

o Consider a particle floating around in space. Each of the coordinates
of the particle can be given by a function of time t, i.e., we can write
x = x(t), y = y(t), and z = z(t). Collecting each of these functions
in a vector gives a vector-valued function

r(t) = (x(2), y(t), 2(t)) = x()i + y(t)j + z(t)k.
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o Consider a particle floating around in space. Each of the coordinates
of the particle can be given by a function of time t, i.e., we can write
x = x(t), y = y(t), and z = z(t). Collecting each of these functions
in a vector gives a vector-valued function

r(t) = (x(2), y(t), 2(t)) = x()i + y(t)j + z(t)k.

We say that r(t) is parametrized by t with coordinate functions
(or components) x(t), y(t), and z(t).
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Vector-Valued Functions

o Consider a particle floating around in space. Each of the coordinates
of the particle can be given by a function of time t, i.e., we can write
x = x(t), y = y(t), and z = z(t). Collecting each of these functions
in a vector gives a vector-valued function

r(t) = (x(2), y(t), 2(t)) = x()i + y(t)j + z(t)k.

We say that r(t) is parametrized by t with coordinate functions
(or components) x(t), y(t), and z(t).

@ Observe that a vector-valued function is a function R — R3, hence its
domain is a subset of the real numbers.
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Vector-Valued Functions

o Consider a particle floating around in space. Each of the coordinates
of the particle can be given by a function of time t, i.e., we can write
x = x(t), y = y(t), and z = z(t). Collecting each of these functions
in a vector gives a vector-valued function

r(t) = (x(2), y(t), 2(t)) = x()i + y(t)j + z(t)k.

We say that r(t) is parametrized by t with coordinate functions
(or components) x(t), y(t), and z(t).

@ Observe that a vector-valued function is a function R — R3, hence its
domain is a subset of the real numbers. Particularly, the domain of
r(t) is the intersection of the domains of x(t), y(t), and z(t).

MATH 127 (Sections 13.1 and 13.2) Vector-Valued Functions The University of Kansas



Vector-Valued Functions

True (a.) or False (b.)

The domain of r(t) = (X 1L+t’ e t)is D, ={teR|t#£1}.

1-t’
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.

© We project into the xy-plane by setting z(t) =t = 0.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.
@ We project into the xy-plane by setting z(t) = t = 0. Observe that as

t increases, the curve r(t) moves clockwise (since r(3) = (—1,0,0))
from the point (0,1,0) and traces out the unit circle in the xy-plane.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.

@ We project into the xy-plane by setting z(t) = t = 0. Observe that as
t increases, the curve r(t) moves clockwise (since r(3) = (—1,0,0))
from the point (0,1,0) and traces out the unit circle in the xy-plane.

@ We project into the xz-plane by setting y(t) = cost = 0.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.

@ We project into the xy-plane by setting z(t) = t = 0. Observe that as
t increases, the curve r(t) moves clockwise (since r(3) = (—1,0,0))
from the point (0,1,0) and traces out the unit circle in the xy-plane.

@ We project into the xz-plane by setting y(t) = cost = 0. Observe that
as t increases, r(t) traces the curve —sin t vertically in the xz-plane.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.

@ We project into the xy-plane by setting z(t) = t = 0. Observe that as
t increases, the curve r(t) moves clockwise (since r(3) = (—1,0,0))
from the point (0,1,0) and traces out the unit circle in the xy-plane.

@ We project into the xz-plane by setting y(t) = cost = 0. Observe that
as t increases, r(t) traces the curve —sin t vertically in the xz-plane.

© We project into the yz-plane by setting x(t) = —sint = 0.
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Visualizing Vector-Valued Functions in R3

@ We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

o Consider the vector-valued function r(t) = (—sint,cost,t) for t > 0.

@ We project into the xy-plane by setting z(t) = t = 0. Observe that as
t increases, the curve r(t) moves clockwise (since r(3) = (—1,0,0))
from the point (0,1,0) and traces out the unit circle in the xy-plane.

@ We project into the xz-plane by setting y(t) = cost = 0. Observe that
as t increases, r(t) traces the curve —sin t vertically in the xz-plane.

© We project into the yz-plane by setting x(t) = —sint = 0. Observe
that as t increases, r(t) traces the curve cos t vertically in the yz-plane.
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Parametrization of Curves in R3

@ Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes.
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Parametrization of Curves in R3

@ Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes. Likewise, given a
curve C in R3, we can produce a parametrization of C.
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Parametrization of Curves in R3

@ Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes. Likewise, given a
curve C in R3, we can produce a parametrization of C.

@ Consider the curve C obtained by intersecting the surfaces
x> —y?>=z—1and x>+ y?> = 4.
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Parametrization of Curves in R3

@ Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes. Likewise, given a
curve C in R3, we can produce a parametrization of C.

@ Consider the curve C obtained by intersecting the surfaces
x?> —y? =z —1 and x? + y? = 4. Using the usual parametrization in
polar coordinates, we have that x(t) = 2cost and y(t) = 2sin t.
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Parametrization of Curves in R3

@ Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes. Likewise, given a
curve C in R3, we can produce a parametrization of C.

@ Consider the curve C obtained by intersecting the surfaces
x?> —y? =z —1 and x? + y? = 4. Using the usual parametrization in
polar coordinates, we have that x(t) = 2cost and y(t) = 2sin t.
Consequently, we may solve for z(t) by observing that

z(t)=z=x>—y?> +1=14cos’t —4sin’ t + 1 = 4cos(2t) + 1.
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Parametrization of Curves in R3

@ Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes. Likewise, given a
curve C in R3, we can produce a parametrization of C.

@ Consider the curve C obtained by intersecting the surfaces

x?> — y?2 =z —1 and x*> + y? = 4. Using the usual parametrization in

polar coordinates, we have that x(t) = 2cost and y(t) = 2sin t.
Consequently, we may solve for z(t) by observing that

z(t)=z=x>—y?> +1=14cos’t —4sin’ t + 1 = 4cos(2t) + 1.
Ultimately, we have that C is given by the vector-valued function

r(t) = (2cost,2sint,4cos(2t) + 1).
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Parametrization of Curves in R3

Embedding a Circle in R3, Pt. |

Choose the vector-valued function that parametrizes the circle of
radius 3 centered at (2, 6,8) and parallel to the xy-plane.

(a.) r(t) = (Vt—2,\/t—6,t—8) (c.) u(t) = (2cost,sint + 6,8)

(b.) s(t) = (3cost+2,3sint +6,8) (d.) v(t) = 3r(2)
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Parametrization of Curves in R3

Embedding a Circle in R3, Pt. Il

Choose the vector-valued function that parametrizes the circle of
radius 3 centered at (2,6, 8) and parallel to the xz-plane.

(a.) r(t) =(Vt—2,t— 6,1/t —8) (c.) u(t) = (2cost,6,sint + 8)

(b.) s(t) = (3cost+2,6,3sint + 8) (d.) v(t) =3r(2)
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Parametrization of Curves in R3

Embedding an Ellipse in R3

Choose the vector-valued function that parametrizes the ellipse
2
%2 + % =1 centered at (9, —4,0) and parallel to the xy-plane.

(a) r(t) = (L2 YE2 0y () u(t) = (2cost + 9,3sint — 4,0)

(b.) s(t) = (Y52, Y& 1) (d.) v(t) = (2cos(t — 9),3sin(t + 4),1)
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Calculus of Vector-Valued Functions

o Considering that vector-valued functions consist of components that
are functions of a single variable, we can extend many of the notions
of Calculus | to vector-valued functions.
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Calculus of Vector-Valued Functions

o Considering that vector-valued functions consist of components that
are functions of a single variable, we can extend many of the notions
of Calculus | to vector-valued functions.

@ Given a vector-valued function r(t) = (x(t), y(t), z(t)), we have that

lim r(t) = < lim x(t), lim y(t), lim z(t)>.

t—tp t—tp t—1tp t—1tp
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Calculus of Vector-Valued Functions

o Considering that vector-valued functions consist of components that
are functions of a single variable, we can extend many of the notions
of Calculus | to vector-valued functions.

@ Given a vector-valued function r(t) = (x(t), y(t), z(t)), we have that
t—1tp t—1tp

tlergo r(t) = <t|ergox(t), lim y(t), lim z(t)>.

@ Given a vector-valued function r(t) = (x(t), y(t), z(t)), we have that

d d d d
Er(t) = <th(t)a EY(t)a dtz(t)>'

MATH 127 (Sections 13.1 and 13.2) Vector-Valued Functions The University of Kansas



