
Vector-Valued Functions

Consider a particle floating around in space.

Each of the coordinates
of the particle can be given by a function of time t, i.e., we can write
x = x(t), y = y(t), and z = z(t). Collecting each of these functions
in a vector gives a vector-valued function

r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k.

We say that r(t) is parametrized by t with coordinate functions
(or components) x(t), y(t), and z(t).

Observe that a vector-valued function is a function R→ R3, hence its
domain is a subset of the real numbers. Particularly, the domain of
r(t) is the intersection of the domains of x(t), y(t), and z(t).
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Vector-Valued Functions

True (a.) or False (b.)

The domain of r(t) = 〈 1
1−t ,

1
1+t , e

−t〉 is Dr = {t ∈ R | t 6= ±1}.
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Visualizing Vector-Valued Functions in R3

We can describe the image of a vector-valued function in R3 by
projecting into the coordinate planes.

Consider the vector-valued function r(t) = 〈− sin t, cos t, t〉 for t ≥ 0.

1 We project into the xy -plane by setting z(t) = t = 0. Observe that as
t increases, the curve r(t) moves clockwise (since r

(
π
2

)
= 〈−1, 0, 0〉)

from the point (0, 1, 0) and traces out the unit circle in the xy -plane.

2 We project into the xz-plane by setting y(t) = cos t = 0. Observe that
as t increases, r(t) traces the curve − sin t vertically in the xz-plane.

3 We project into the yz-plane by setting x(t) = − sin t = 0. Observe
that as t increases, r(t) traces the curve cos t vertically in the yz-plane.
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Parametrization of Curves in R3

Given a parametrization of a curve in R3, we can reproduce the image
of the curve by projecting into the coordinate axes.

Likewise, given a
curve C in R3, we can produce a parametrization of C.

Consider the curve C obtained by intersecting the surfaces
x2 − y2 = z − 1 and x2 + y2 = 4. Using the usual parametrization in
polar coordinates, we have that x(t) = 2 cos t and y(t) = 2 sin t.
Consequently, we may solve for z(t) by observing that

z(t) = z = x2 − y2 + 1 = 4 cos2 t − 4 sin2 t + 1 = 4 cos(2t) + 1.

Ultimately, we have that C is given by the vector-valued function

r(t) = 〈2 cos t, 2 sin t, 4 cos(2t) + 1〉.
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Parametrization of Curves in R3

Embedding a Circle in R3, Pt. I
Choose the vector-valued function that parametrizes the circle of
radius 3 centered at (2, 6, 8) and parallel to the xy -plane.

(a.) r(t) = 〈
√
t − 2,

√
t − 6, t − 8〉 (c.) u(t) = 〈2 cos t, sin t + 6, 8〉

(b.) s(t) = 〈3 cos t + 2, 3 sin t + 6, 8〉 (d.) v(t) = 3r(t)

Blah.
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Parametrization of Curves in R3

Embedding a Circle in R3, Pt. II
Choose the vector-valued function that parametrizes the circle of
radius 3 centered at (2, 6, 8) and parallel to the xz-plane.

(a.) r(t) = 〈
√
t − 2, t − 6,

√
t − 8〉 (c.) u(t) = 〈2 cos t, 6, sin t + 8〉

(b.) s(t) = 〈3 cos t + 2, 6, 3 sin t + 8〉 (d.) v(t) = 3r(t)

Blah.
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Parametrization of Curves in R3

Embedding an Ellipse in R3

Choose the vector-valued function that parametrizes the ellipse
x2

4 + y2

9 = 1 centered at (9,−4, 0) and parallel to the xy -plane.

(a.) r(t) = 〈
√
t−9
2 ,

√
t+4
3 , 0〉 (c.) u(t) = 〈2 cos t + 9, 3 sin t − 4, 0〉

(b.) s(t) = 〈
√
t−9
2 ,

√
t+4
3 , 1〉 (d.) v(t) = 〈2 cos(t − 9), 3 sin(t + 4), 1〉

Blah.
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Calculus of Vector-Valued Functions

Considering that vector-valued functions consist of components that
are functions of a single variable, we can extend many of the notions
of Calculus I to vector-valued functions.

Given a vector-valued function r(t) = 〈x(t), y(t), z(t)〉, we have that

lim
t→t0

r(t) =

〈
lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)

〉
.

Given a vector-valued function r(t) = 〈x(t), y(t), z(t)〉, we have that

d

dt
r(t) =

〈
d

dt
x(t),

d

dt
y(t),

d

dt
z(t)

〉
.

MATH 127 (Sections 13.1 and 13.2) Vector-Valued Functions The University of Kansas 8 / 8



Calculus of Vector-Valued Functions

Considering that vector-valued functions consist of components that
are functions of a single variable, we can extend many of the notions
of Calculus I to vector-valued functions.

Given a vector-valued function r(t) = 〈x(t), y(t), z(t)〉, we have that

lim
t→t0

r(t) =

〈
lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)

〉
.

Given a vector-valued function r(t) = 〈x(t), y(t), z(t)〉, we have that

d

dt
r(t) =

〈
d

dt
x(t),

d

dt
y(t),

d

dt
z(t)

〉
.

MATH 127 (Sections 13.1 and 13.2) Vector-Valued Functions The University of Kansas 8 / 8



Calculus of Vector-Valued Functions

Considering that vector-valued functions consist of components that
are functions of a single variable, we can extend many of the notions
of Calculus I to vector-valued functions.

Given a vector-valued function r(t) = 〈x(t), y(t), z(t)〉, we have that

lim
t→t0

r(t) =

〈
lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)

〉
.

Given a vector-valued function r(t) = 〈x(t), y(t), z(t)〉, we have that

d

dt
r(t) =

〈
d

dt
x(t),

d

dt
y(t),

d

dt
z(t)

〉
.

MATH 127 (Sections 13.1 and 13.2) Vector-Valued Functions The University of Kansas 8 / 8


