Each vector in ℝⁿ is uniquely determined by two points
 P = (p₁,..., p_n) and Q = (q₁,..., q_n) by identifying the ray PQ with the vector **v** = ⟨q₁ - p₁,..., q_n - p_n⟩ based at the origin.

- Each vector in \mathbb{R}^n is uniquely determined by two points $P = (p_1, \ldots, p_n)$ and $Q = (q_1, \ldots, q_n)$ by identifying the ray \overrightarrow{PQ} with the vector $\mathbf{v} = \langle q_1 p_1, \ldots, q_n p_n \rangle$ based at the origin.
- Each vector $\mathbf{v} = \langle v_1, \dots, v_n \rangle$ in \mathbb{R}^n possesses a magnitude (or length)

$$||\mathbf{v}|| = \sqrt{v_1^2 + \cdots + v_n^2}.$$

- Each vector in \mathbb{R}^n is uniquely determined by two points $P = (p_1, \ldots, p_n)$ and $Q = (q_1, \ldots, q_n)$ by identifying the ray \overrightarrow{PQ} with the vector $\mathbf{v} = \langle q_1 p_1, \ldots, q_n p_n \rangle$ based at the origin.
- Each vector $\mathbf{v} = \langle v_1, \dots, v_n \rangle$ in \mathbb{R}^n possesses a magnitude (or length)

$$||\mathbf{v}|| = \sqrt{v_1^2 + \cdots + v_n^2}.$$

Given vectors v = ⟨v₁,..., v_n⟩ and w = ⟨w₁,..., w_n⟩ in ℝⁿ, we define their sum to be the vector v + w = ⟨v₁ + w₁,..., v_n + w_n⟩.

- Each vector in \mathbb{R}^n is uniquely determined by two points $P = (p_1, \ldots, p_n)$ and $Q = (q_1, \ldots, q_n)$ by identifying the ray \overrightarrow{PQ} with the vector $\mathbf{v} = \langle q_1 p_1, \ldots, q_n p_n \rangle$ based at the origin.
- Each vector $\mathbf{v} = \langle v_1, \dots, v_n \rangle$ in \mathbb{R}^n possesses a magnitude (or length)

$$||\mathbf{v}|| = \sqrt{v_1^2 + \cdots + v_n^2}.$$

- Given vectors v = ⟨v₁,..., v_n⟩ and w = ⟨w₁,..., w_n⟩ in ℝⁿ, we define their sum to be the vector v + w = ⟨v₁ + w₁,..., v_n + w_n⟩.
- Given a vector $\mathbf{v} = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$ in \mathbb{R}^n and a scalar λ in \mathbb{R} , we define the scalar product of \mathbf{v} by λ to be the vector $\lambda \mathbf{v} = \langle \lambda \mathbf{v}_1, \dots, \lambda \mathbf{v}_n \rangle$.

Consider the vectors $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 0, 1 \rangle$ in \mathbb{R}^3 . Compute the vectors $3\mathbf{v}$, $-\mathbf{w}$, and $3\mathbf{v} - \mathbf{w}$; then, determine the magnitude $||3\mathbf{v} - \mathbf{w}||$ of the vector $3\mathbf{v} - \mathbf{w}$.

Consider the vectors $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 0, 1 \rangle$ in \mathbb{R}^3 . Compute the vectors $3\mathbf{v}$, $-\mathbf{w}$, and $3\mathbf{v} - \mathbf{w}$; then, determine the magnitude $||3\mathbf{v} - \mathbf{w}||$ of the vector $3\mathbf{v} - \mathbf{w}$.

(a.) By definition of scalar multiplication, we have that $3\mathbf{v} = 3\langle 1, 2, 3 \rangle = \langle 3, 6, 9 \rangle$ and $-\mathbf{w} = -\langle -1, 0, 1 \rangle = \langle 1, 0, -1 \rangle$.

Consider the vectors $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 0, 1 \rangle$ in \mathbb{R}^3 . Compute the vectors $3\mathbf{v}$, $-\mathbf{w}$, and $3\mathbf{v} - \mathbf{w}$; then, determine the magnitude $||3\mathbf{v} - \mathbf{w}||$ of the vector $3\mathbf{v} - \mathbf{w}$.

(a.) By definition of scalar multiplication, we have that $3\mathbf{v} = 3\langle 1, 2, 3 \rangle = \langle 3, 6, 9 \rangle$ and $-\mathbf{w} = -\langle -1, 0, 1 \rangle = \langle 1, 0, -1 \rangle$. Consequently, it follows that $3\mathbf{v} - \mathbf{w} = \langle 3, 6, 9 \rangle + \langle 1, 0, -1 \rangle = \langle 4, 6, 8 \rangle$.

Consider the vectors $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 0, 1 \rangle$ in \mathbb{R}^3 . Compute the vectors $3\mathbf{v}$, $-\mathbf{w}$, and $3\mathbf{v} - \mathbf{w}$; then, determine the magnitude $||3\mathbf{v} - \mathbf{w}||$ of the vector $3\mathbf{v} - \mathbf{w}$.

(a.) By definition of scalar multiplication, we have that $3\mathbf{v} = 3\langle 1, 2, 3 \rangle = \langle 3, 6, 9 \rangle$ and $-\mathbf{w} = -\langle -1, 0, 1 \rangle = \langle 1, 0, -1 \rangle$. Consequently, it follows that $3\mathbf{v} - \mathbf{w} = \langle 3, 6, 9 \rangle + \langle 1, 0, -1 \rangle = \langle 4, 6, 8 \rangle$. Ultimately, we find that $||3\mathbf{v} - \mathbf{w}|| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116} = 2\sqrt{29}$.

MATH 127 (Sections 12.1 to 12.5)

• Unit vectors are those vectors \mathbf{v} such that $||\mathbf{v}|| = 1$.

Unit vectors are those vectors v such that ||v|| = 1. Given a nonzero vector w, we may scale w to obtain a unit vector 1
 ||v|| w.

- Unit vectors are those vectors v such that ||v|| = 1. Given a nonzero vector w, we may scale w to obtain a unit vector 1
 Image: I
- We refer to the vector e_i with 1 in the *i*th place and 0 elsewhere as the *i*th standard basis vector of ℝⁿ.

- Unit vectors are those vectors v such that ||v|| = 1. Given a nonzero vector w, we may scale w to obtain a unit vector 1
 ||w||
- We refer to the vector e_i with 1 in the *i*th place and 0 elsewhere as the *i*th standard basis vector of ℝⁿ. For example, the standard basis vectors of ℝ³ are e₁ = (1,0,0), e₂ = (0,1,0), and e₃ = (0,0,1).

- Unit vectors are those vectors v such that ||v|| = 1. Given a nonzero vector w, we may scale w to obtain a unit vector 1
 ||w||
- We refer to the vector e_i with 1 in the *i*th place and 0 elsewhere as the *i*th standard basis vector of ℝⁿ. For example, the standard basis vectors of ℝ³ are e₁ = (1,0,0), e₂ = (0,1,0), and e₃ = (0,0,1).
- Given two vectors **v** and **w** in \mathbb{R}^n , we have the **Triangle Inequality**

$$||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$$

with equality if and only if one of **v** or **w** is 0 or $\mathbf{v} = \lambda \mathbf{w}$ ($\lambda > 0$).

Each line in ℝⁿ is uniquely determined by a point P = (p₁,..., p_n) and a directional vector **v** = ⟨v₁,..., v_n⟩.

• Each line in \mathbb{R}^n is uniquely determined by a point $P = (p_1, \ldots, p_n)$ and a directional vector $\mathbf{v} = \langle v_1, \ldots, v_n \rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$\mathbf{r}(t) = \langle P \rangle + t\mathbf{v} = \langle p_1 + tv_1, \dots, p_n + tv_n \rangle,$$

where $\langle P \rangle = \langle p_1, \dots, p_n \rangle$ and t is a real number in $(-\infty, \infty)$.

• Each line in \mathbb{R}^n is uniquely determined by a point $P = (p_1, \ldots, p_n)$ and a directional vector $\mathbf{v} = \langle v_1, \ldots, v_n \rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$\mathbf{r}(t) = \langle P \rangle + t\mathbf{v} = \langle p_1 + tv_1, \dots, p_n + tv_n \rangle,$$

where $\langle P \rangle = \langle p_1, \dots, p_n \rangle$ and t is a real number in $(-\infty, \infty)$.

• Given vectors $\mathbf{v} = \langle v_1, \dots, v_n \rangle$ and $\mathbf{w} = \langle w_1, \dots, w_n \rangle$ in \mathbb{R}^n , we define the **dot product** of \mathbf{v} and \mathbf{w} as the scalar $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + \dots + v_n w_n$.

• Each line in \mathbb{R}^n is uniquely determined by a point $P = (p_1, \ldots, p_n)$ and a directional vector $\mathbf{v} = \langle v_1, \ldots, v_n \rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$\mathbf{r}(t) = \langle P \rangle + t\mathbf{v} = \langle p_1 + tv_1, \dots, p_n + tv_n \rangle,$$

where $\langle P \rangle = \langle p_1, \dots, p_n \rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors v = ⟨v₁,..., v_n⟩ and w = ⟨w₁,..., w_n⟩ in ℝⁿ, we define the dot product of v and w as the scalar v ⋅ w = v₁w₁ + ··· + v_nw_n.
- Given vectors **v** and **w** in \mathbb{R}^n with angle θ between them, we have that

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| \, ||\mathbf{w}|| \cos \theta.$$

Each line in ℝⁿ is uniquely determined by a point P = (p₁,..., p_n) and a directional vector v = ⟨v₁,..., v_n⟩. Explicitly, the line ℓ through P in the direction of v is given by the parametric equation

$$\mathbf{r}(t) = \langle P \rangle + t\mathbf{v} = \langle p_1 + tv_1, \dots, p_n + tv_n \rangle,$$

where $\langle P \rangle = \langle p_1, \dots, p_n \rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors v = ⟨v₁,..., v_n⟩ and w = ⟨w₁,..., w_n⟩ in ℝⁿ, we define the dot product of v and w as the scalar v ⋅ w = v₁w₁ + ··· + v_nw_n.
- Given vectors **v** and **w** in \mathbb{R}^n with angle θ between them, we have that

 $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| \, ||\mathbf{w}|| \cos \theta.$

We say that **v** and **w** are **orthogonal** if $\mathbf{v} \cdot \mathbf{w} = 0$.

• Each line in \mathbb{R}^n is uniquely determined by a point $P = (p_1, \ldots, p_n)$ and a directional vector $\mathbf{v} = \langle v_1, \ldots, v_n \rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$\mathbf{r}(t) = \langle P \rangle + t\mathbf{v} = \langle p_1 + tv_1, \dots, p_n + tv_n \rangle,$$

where $\langle P \rangle = \langle p_1, \dots, p_n \rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors v = ⟨v₁,..., v_n⟩ and w = ⟨w₁,..., w_n⟩ in ℝⁿ, we define the dot product of v and w as the scalar v ⋅ w = v₁w₁ + ··· + v_nw_n.
- Given vectors **v** and **w** in \mathbb{R}^n with angle θ between them, we have that

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| \, ||\mathbf{w}|| \cos \theta.$$

We say that **v** and **w** are **orthogonal** if $\mathbf{v} \cdot \mathbf{w} = 0$. Observe that in \mathbb{R}^2 or \mathbb{R}^3 , this is equivalent to the notion of "perpendicular" vectors.

4 / 20

Given that two lines ℓ_1 and ℓ_2 are both parallel to the line ℓ_3 , it must be true that the lines ℓ_1 and ℓ_2 are parallel.

Given that two lines ℓ_1 and ℓ_2 are both parallel to the line ℓ_3 , it must be true that the lines ℓ_1 and ℓ_2 are parallel.

(a.) True. Lines are uniquely determined by a point P and a directional vector **v**. Parallel lines have the same (up to a scalar multiple) directional vector, so the directional vector of ℓ_1 and ℓ_2 must be the same.

Given that two lines ℓ_1 and ℓ_2 are both orthogonal to the line ℓ_3 , it must be true that the lines ℓ_1 and ℓ_2 are orthogonal.

Given that two lines ℓ_1 and ℓ_2 are both orthogonal to the line ℓ_3 , it must be true that the lines ℓ_1 and ℓ_2 are orthogonal.

b.) False. For example, ℓ_1 and ℓ_2 could be skew. Consider the lines $\ell_1 = t\langle 1, 1, 1 \rangle$, $\ell_2 = t\langle 2, 1, 2 \rangle$, and $\ell_3 = t\langle 1, 0, -1 \rangle$. We have that

$$\begin{split} \mathbf{v}_1 \cdot \mathbf{v}_3 &= \langle 1, 1, 1 \rangle \cdot \langle 1, 0, -1 \rangle = 0 \text{ and} \\ \mathbf{v}_2 \cdot \mathbf{v}_3 &= \langle 2, 1, 2 \rangle \cdot \langle 1, 0, -1 \rangle = 0 \text{ but} \\ \mathbf{v}_1 \cdot \mathbf{v}_2 &= \langle 1, 1, 1 \rangle \cdot \langle 2, 1, 2 \rangle = 5, \end{split}$$

hence ℓ_1 and ℓ_2 are not orthogonal, as their directional vectors are not.

Given that $\mathbf{v} \cdot \mathbf{w} < 0$, the angle θ between \mathbf{v} and \mathbf{w} is acute.

MATH 127 (Sections 12.1 to 12.5)

Given that $\mathbf{v} \cdot \mathbf{w} < 0$, the angle θ between \mathbf{v} and \mathbf{w} is acute.

b.) False. Combining the formula $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$ with the fact that $||\mathbf{v}||$ and $||\mathbf{w}||$ are by definition positive, we conclude that $\cos \theta < 0$. Considering that $\cos \theta \ge 0$ whenever $0 \le \theta \le \frac{\pi}{2}$ or $\frac{3\pi}{2} \le \theta < 2\pi$, we must have that $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$, from which it follow that θ is obtuse.

7 / 20

Given that **u** is orthogonal to **v** and **w**, **u** is orthogonal to $\mathbf{v} + \mathbf{w}$.

Given that **u** is orthogonal to **v** and **w**, **u** is orthogonal to $\mathbf{v} + \mathbf{w}$.

a.) True. Explicitly, we will assume that $\mathbf{u} = \langle u_1, \ldots, u_n \rangle$, $\mathbf{v} = \langle v_1, \ldots, v_n \rangle$, and $\mathbf{w} = \langle w_1, \ldots, w_n \rangle$. We are given that $u_1v_1 + \cdots + u_nv_n = \mathbf{u} \cdot \mathbf{v} = 0$ and $u_1w_1 + \cdots + u_nw_n = \mathbf{u} \cdot \mathbf{w} = 0$. Considering that $\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, \ldots, v_n + w_n \rangle$, we have that

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = u_1 \langle v_1 + w_1 \rangle + \dots + u_n \langle v_n + w_n \rangle$$

= $\langle u_1 v_1 + \dots + u_n v_n \rangle + \langle u_1 w_1 + \dots + u_n w_n \rangle = 0.$

 We define a real n × n matrix to be an n × n array of real numbers. Recall that the sum of two n × n matrices [a_{ij}] and [b_{ij}] is defined to be the matrix [s_{ij}] such that s_{ij} = a_{ij} + b_{ij}, and the product of the same n × n matrices is defined to be the matrix [p_{ij}] such that

$$p_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.$$

 We define a real n × n matrix to be an n × n array of real numbers. Recall that the sum of two n × n matrices [a_{ij}] and [b_{ij}] is defined to be the matrix [s_{ij}] such that s_{ij} = a_{ij} + b_{ij}, and the product of the same n × n matrices is defined to be the matrix [p_{ij}] such that

$$p_{ij} = \sum_{k=1}^n \mathsf{a}_{ik} \mathsf{b}_{kj}.$$

Put another way, the entry of $[p_{ij}]$ in the *i*th row and *j*th column is the sum of the products of the entries a_{ik} in the *i*th row and *k*th column of $[a_{ij}]$ and b_{kj} in the *k*th row and *j*th column of $[b_{ij}]$.

 We define a real n × n matrix to be an n × n array of real numbers. Recall that the sum of two n × n matrices [a_{ij}] and [b_{ij}] is defined to be the matrix [s_{ij}] such that s_{ij} = a_{ij} + b_{ij}, and the product of the same n × n matrices is defined to be the matrix [p_{ij}] such that

$$p_{ij} = \sum_{k=1}^n \mathsf{a}_{ik} \mathsf{b}_{kj}.$$

Put another way, the entry of $[p_{ij}]$ in the *i*th row and *j*th column is the sum of the products of the entries a_{ik} in the *i*th row and *k*th column of $[a_{ij}]$ and b_{kj} in the *k*th row and *j*th column of $[b_{ij}]$.

• Given a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the **determinant** of A is the <u>scalar</u>

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Computation with Matrices

Consider the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Compute the matrices A + B and AB; then, find the determinant of A + B.

Computation with Matrices

Consider the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Compute the matrices A + B and AB; then, find the determinant of A + B.

By definition of matrix addition and multiplication, we have that

$$A + B = \begin{bmatrix} 1+1 & 2+0 \\ 3+0 & 4-1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$$
$$AB = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot -1 \\ 3 \cdot 1 + 4 \cdot 0 & 3 \cdot 0 + 4 \cdot -1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$$

MATH 127 (Sections 12.1 to 12.5)

Computation with Matrices

Consider the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Compute the matrices A + B and AB; then, find the determinant of A + B.

By definition of matrix addition and multiplication, we have that

$$A + B = \begin{bmatrix} 1+1 & 2+0 \\ 3+0 & 4-1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$$
$$AB = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot -1 \\ 3 \cdot 1 + 4 \cdot 0 & 3 \cdot 0 + 4 \cdot -1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$$

Consequently, we have that $det(A + B) = 2 \cdot 3 - 2 \cdot 3 = 0$.

• Given vectors $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ in \mathbb{R}^3 , we define the **cross product** of \mathbf{v} and \mathbf{w} to be the vector

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{e}_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{e}_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{e}_3.$$

• Given vectors $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ in \mathbb{R}^3 , we define the **cross product** of \mathbf{v} and \mathbf{w} to be the vector

$$\mathbf{v} imes \mathbf{w} = egin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \ \end{bmatrix} = egin{bmatrix} v_2 & v_3 \ w_2 & w_3 \ \end{pmatrix} \mathbf{e}_1 - egin{bmatrix} v_1 & v_3 \ w_1 & w_3 \ \end{pmatrix} \mathbf{e}_2 + egin{bmatrix} v_1 & v_2 \ w_1 & w_2 \ \end{pmatrix} \mathbf{e}_3.$$

One method of computing the cross product is to write the array

\mathbf{e}_1	\mathbf{e}_2	e ₃	\mathbf{e}_1	e ₂
v_1	<i>v</i> ₂	V ₃	v_1	<i>v</i> ₂
W_1	W2	W3	W_1	<i>w</i> ₂

add the three top-left-to-bottom-right full diagonals; and subtract the top-right-to-bottom-left full diagonals.

• Given vectors $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ in \mathbb{R}^3 , we define the **cross product** of \mathbf{v} and \mathbf{w} to be the vector

$$\mathbf{v} imes \mathbf{w} = egin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \ \end{bmatrix} = egin{bmatrix} v_2 & v_3 \ w_2 & w_3 \ \end{pmatrix} \mathbf{e}_1 - egin{bmatrix} v_1 & v_3 \ w_1 & w_3 \ \end{pmatrix} \mathbf{e}_2 + egin{bmatrix} v_1 & v_2 \ w_1 & w_2 \ \end{pmatrix} \mathbf{e}_3.$$

One method of computing the cross product is to write the array

\mathbf{e}_1	\mathbf{e}_2	e ₃	\mathbf{e}_1	\mathbf{e}_2
v_1	<i>v</i> ₂	V ₃	v_1	<i>v</i> ₂
W_1	W2	W3	W_1	W2

add the three top-left-to-bottom-right full diagonals; and subtract the top-right-to-bottom-left full diagonals. From this, one will obtain

$$\mathbf{v} \times \mathbf{w} = \mathbf{e}_1 v_2 w_3 + \mathbf{e}_2 v_3 w_1 + \mathbf{e}_3 v_1 w_2$$

$$-\mathbf{e}_1 v_3 w_2 - \mathbf{e}_2 v_1 w_3 - \mathbf{e}_3 v_2 w_1.$$

• Recall the following properties of the cross product.

1 $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .

2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .
 - 2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .
 - **(3)** $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ whenever $\mathbf{w} = \lambda \mathbf{v}$ for some scalar λ .

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .
 - 2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .
 - **(3)** $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ whenever $\mathbf{w} = \lambda \mathbf{v}$ for some scalar λ .
 - **9** $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .
 - 2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .
 - **(a)** $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ whenever $\mathbf{w} = \lambda \mathbf{v}$ for some scalar λ .
 - **9** $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.
 - $(\lambda \mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (\lambda \mathbf{w}) = \lambda (\mathbf{v} \times \mathbf{w})$ for any scalar λ .

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .
 - 2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .
 - **(a)** $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ whenever $\mathbf{w} = \lambda \mathbf{v}$ for some scalar λ .
 - **9** $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.

$$\textbf{9} \ \ (\lambda \mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (\lambda \mathbf{w}) = \lambda (\mathbf{v} \times \mathbf{w}) \text{ for any scalar } \lambda.$$

 $\textbf{0} \ (u+v)\times w = u\times w + v\times w \text{ and } u\times (v+w) = u\times v + u\times w$

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .
 - 2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .
 - **(3)** $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ whenever $\mathbf{w} = \lambda \mathbf{v}$ for some scalar λ .
 - **(** $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.

$$\textbf{0} \ \ (\lambda \mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (\lambda \mathbf{w}) = \lambda (\mathbf{v} \times \mathbf{w}) \text{ for any scalar } \lambda.$$

 $\textbf{0} \ (u + v) \times w = u \times w + v \times w \text{ and } u \times (v + w) = u \times v + u \times w$

- Recall the following properties of the cross product.
 - **1** $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} .
 - 2 $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w} .
 - **(3)** $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ whenever $\mathbf{w} = \lambda \mathbf{v}$ for some scalar λ .
 - **4** $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.

$$\textbf{9} \ \ (\lambda \mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (\lambda \mathbf{w}) = \lambda (\mathbf{v} \times \mathbf{w}) \text{ for any scalar } \lambda.$$

(u + v) × w = u × w + v × w and u × (v + w) = u × v + u × w

Properties (5.) and (6.) imply that the cross product is **bilinear**.

• Each line in \mathbb{R}^2 is determined uniquely (up to a scalar multiple) by a linear equation ax + by = c.

Each line in ℝ² is determined uniquely (up to a scalar multiple) by a linear equation ax + by = c. Likewise, each plane in ℝ³ is determined uniquely (up to a scalar multiple) by an equation ax + by + cz = d.

- Each line in ℝ² is determined uniquely (up to a scalar multiple) by a linear equation ax + by = c. Likewise, each plane in ℝ³ is determined uniquely (up to a scalar multiple) by an equation ax + by + cz = d.
- Explicitly, the plane \mathcal{P} through the point $P_0 = (x_0, y_0, z_0)$ is uniquely determined (up to a scalar multiple) by a **normal** vector $\mathbf{n} = \langle a, b, c \rangle$ according to the following: a point P lies on \mathcal{P} if and only if \mathbf{n} and $\overrightarrow{P_0P}$ are orthogonal if and only if $n \cdot \overrightarrow{P_0P} = 0$ if and only if

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

- Each line in ℝ² is determined uniquely (up to a scalar multiple) by a linear equation ax + by = c. Likewise, each plane in ℝ³ is determined uniquely (up to a scalar multiple) by an equation ax + by + cz = d.
- Explicitly, the plane \mathcal{P} through the point $P_0 = (x_0, y_0, z_0)$ is uniquely determined (up to a scalar multiple) by a **normal** vector $\mathbf{n} = \langle a, b, c \rangle$ according to the following: a point P lies on \mathcal{P} if and only if \mathbf{n} and $\overrightarrow{P_0P}$ are orthogonal if and only if $n \cdot \overrightarrow{P_0P} = 0$ if and only if

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

By setting $d = ax_0 + by_0 + cz_0$, we have ax + by + cz = d.

- Each line in ℝ² is determined uniquely (up to a scalar multiple) by a linear equation ax + by = c. Likewise, each plane in ℝ³ is determined uniquely (up to a scalar multiple) by an equation ax + by + cz = d.
- Explicitly, the plane \mathcal{P} through the point $P_0 = (x_0, y_0, z_0)$ is uniquely determined (up to a scalar multiple) by a **normal** vector $\mathbf{n} = \langle a, b, c \rangle$ according to the following: a point P lies on \mathcal{P} if and only if \mathbf{n} and $\overrightarrow{P_0P}$ are orthogonal if and only if $n \cdot \overrightarrow{P_0P} = 0$ if and only if

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

By setting $d = ax_0 + by_0 + cz_0$, we have ax + by + cz = d.

• Given three points $P = (x_0, y_0, z_0)$, Q, and R, the equation of the plane through P, Q, and R can be determined by setting $\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$ and computing the dot product $d = \mathbf{n} \cdot \langle x_0, y_0, z_0 \rangle$.

Given that two lines ℓ_1 and ℓ_2 are both parallel to the plane \mathcal{P} , it must be true that the lines ℓ_1 and ℓ_2 are parallel.

Given that two lines ℓ_1 and ℓ_2 are both parallel to the plane \mathcal{P} , it must be true that the lines ℓ_1 and ℓ_2 are parallel.

b.) False. Lines that are parallel to the plane \mathcal{P} are orthogonal to the normal vector **n** that defines \mathcal{P} . Consequently, the statement in question is a reformulation of the previous false statement.

Given that two lines ℓ_1 and ℓ_2 are both orthogonal to the plane \mathcal{P} , it must be true that the lines ℓ_1 and ℓ_2 are parallel.

Given that two lines ℓ_1 and ℓ_2 are both orthogonal to the plane \mathcal{P} , it must be true that the lines ℓ_1 and ℓ_2 are parallel.

a.) True. Lines that are orthogonal to the plane \mathcal{P} are parallel to the normal vector **n** that defines \mathcal{P} . Consequently, the statement in question is a reformulation of the first true statement.

The plane \mathcal{P} defined by the equation x + y = 0 contains the *z*-axis.

The plane \mathcal{P} defined by the equation x + y = 0 contains the *z*-axis.

a.) True. We note that the normal vector determining the given plane is $\mathbf{n} = \langle 1, 1, 0 \rangle$. Consequently, the vector $\mathbf{e}_3 = \langle 0, 0, 1 \rangle$ that determines the *z*-axis is orthogonal to \mathbf{n} and must therefore be contained in \mathcal{P} .

The plane \mathcal{P} defined by the equation x + y = 0 contains the *z*-axis.

a.) True. We note that the normal vector determining the given plane is $\mathbf{n} = \langle 1, 1, 0 \rangle$. Consequently, the vector $\mathbf{e}_3 = \langle 0, 0, 1 \rangle$ that determines the *z*-axis is orthogonal to \mathbf{n} and must therefore be contained in \mathcal{P} .

One other way to see it is that all points of the form (0,0,z) satisfy the given equation and must therefore lie in the given plane.

The plane \mathcal{P}_1 defined by the equation x + y + z = 1 and the plane \mathcal{P}_2 defined by the equation x + 2y + 3z = 1 intersect.

The plane \mathcal{P}_1 defined by the equation x + y + z = 1 and the plane \mathcal{P}_2 defined by the equation x + 2y + 3z = 1 intersect.

a.) True. Both planes contain the point (1,0,0) and therefore intersect at this point. Further, we find that the vector $\mathbf{v} = \langle 1, -2, 1 \rangle$ is orthogonal to both \mathbf{n}_1 and \mathbf{n}_2 . Consequently, the line of intersection is given by

$$\mathbf{r}(t) = \langle 1, 0, 0 \rangle + t \langle 1, -2, 1 \rangle = \langle t+1, -2t, t \rangle.$$

17 / 20

The plane \mathcal{P}_1 defined by the equation x + y + z = 1 and the plane \mathcal{P}_2 defined by the equation x + 2y + 3z = 1 intersect.

a.) True. Both planes contain the point (1,0,0) and therefore intersect at this point. Further, we find that the vector $\mathbf{v} = \langle 1, -2, 1 \rangle$ is orthogonal to both \mathbf{n}_1 and \mathbf{n}_2 . Consequently, the line of intersection is given by

$$\mathbf{r}(t) = \langle 1, 0, 0 \rangle + t \langle 1, -2, 1 \rangle = \langle t+1, -2t, t \rangle.$$

One other way to see it is to solve the given system of equations. We find that y + z = 2y + 3z so that y = -2z. Plugging this back into the original equation gives x - z = 1 so that x = z + 1. Bada-bing, bada-boom.

We refer to ℝⁿ as a vector space over ℝ. Generally, a vector space over ℝ is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.

- We refer to ℝⁿ as a vector space over ℝ. Generally, a vector space over ℝ is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.
- We say that the dimension of a vector space is the (unique) number of vectors in a basis. For instance, the dimension of ℝⁿ is n since the n vectors e₁,..., e_n form a basis for ℝⁿ.

- We refer to ℝⁿ as a vector space over ℝ. Generally, a vector space over ℝ is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.
- We say that the dimension of a vector space is the (unique) number of vectors in a basis. For instance, the dimension of ℝⁿ is n since the n vectors e₁,..., e_n form a basis for ℝⁿ.
- Functions between vector spaces are called **linear transformations**. Given vector spaces V and W, a linear transformation $T : V \to W$ must satisfy $T(\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2) = \lambda_1 T(\mathbf{v}_1) + \lambda_2 T(\mathbf{v}_2)$. Cross product with a fixed vector is an example of a linear transformation.

- We refer to ℝⁿ as a vector space over ℝ. Generally, a vector space over ℝ is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.
- We say that the dimension of a vector space is the (unique) number of vectors in a basis. For instance, the dimension of ℝⁿ is n since the n vectors e₁,..., e_n form a basis for ℝⁿ.
- Functions between vector spaces are called **linear transformations**. Given vector spaces V and W, a linear transformation $T : V \to W$ must satisfy $T(\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2) = \lambda_1 T(\mathbf{v}_1) + \lambda_2 T(\mathbf{v}_2)$. Cross product with a fixed vector is an example of a linear transformation.
- Given that the target space of a linear transformation *T* is ℝ, we say that *T* is a linear functional. Examples of linear functionals include (1.) the dot product with a fixed vector and (2.) the determinant.

18 / 20

The constant function T(x, y, z) = 1 is a linear functional.

The constant function T(x, y, z) = 1 is a linear functional.

(b.) False. On the contrary, if T were linear, we would have that 1 = T(2,0,0) = 2T(1,0,0) = 2. Clearly, this is impossible.

MATH 127 (Sections 12.1 to 12.5)

Vector Spaces and Linear Maps

True (a.) or False (b.)

The function T(x, y, z) = (2x, 2y, 2z) is a linear transformation.

The function T(x, y, z) = (2x, 2y, 2z) is a linear transformation.

(a.) True. Given vectors $\mathbf{v}_1 = \langle x_1, y_1, z_1 \rangle$ and $\mathbf{v}_2 = \langle x_2, y_2, z_2 \rangle$ and scalars λ_1 and λ_2 , we have that

$$T(\lambda_{1}\mathbf{v}_{1} + \lambda_{2}\mathbf{v}_{2}) = T(\lambda_{1}x_{1} + \lambda_{2}x_{2}, \lambda_{1}y_{1} + \lambda_{2}y_{2}, \lambda_{1}z_{1} + \lambda_{2}z_{2})$$

= $(2\lambda_{1}x_{1} + 2\lambda_{2}x_{2}, 2\lambda_{1}y_{1} + 2\lambda_{2}y_{2}, 2\lambda_{1}z_{1} + 2\lambda_{2}z_{2})$
= $(2\lambda_{1}x_{1}, 2\lambda_{1}y_{1}, 2\lambda_{1}z_{1}) + (2\lambda_{2}x_{2}, 2\lambda_{2}y_{2}, 2\lambda_{2}z_{2})$
= $\lambda_{1}(2x_{1}, 2y_{1}, 2z_{1}) + \lambda_{2}(2x_{2}, 2y_{2}, 2z_{2})$
= $\lambda_{1}T(\mathbf{v}_{1}) + \lambda_{2}T(\mathbf{v}_{2}).$

20 / 20

The function T(x, y, z) = (2x, 2y, 2z) is a linear transformation.

(a.) True. Given vectors $\mathbf{v}_1 = \langle x_1, y_1, z_1 \rangle$ and $\mathbf{v}_2 = \langle x_2, y_2, z_2 \rangle$ and scalars λ_1 and λ_2 , we have that

$$T(\lambda_{1}\mathbf{v}_{1} + \lambda_{2}\mathbf{v}_{2}) = T(\lambda_{1}x_{1} + \lambda_{2}x_{2}, \lambda_{1}y_{1} + \lambda_{2}y_{2}, \lambda_{1}z_{1} + \lambda_{2}z_{2})$$

= $(2\lambda_{1}x_{1} + 2\lambda_{2}x_{2}, 2\lambda_{1}y_{1} + 2\lambda_{2}y_{2}, 2\lambda_{1}z_{1} + 2\lambda_{2}z_{2})$
= $(2\lambda_{1}x_{1}, 2\lambda_{1}y_{1}, 2\lambda_{1}z_{1}) + (2\lambda_{2}x_{2}, 2\lambda_{2}y_{2}, 2\lambda_{2}z_{2})$
= $\lambda_{1}(2x_{1}, 2y_{1}, 2z_{1}) + \lambda_{2}(2x_{2}, 2y_{2}, 2z_{2})$
= $\lambda_{1}T(\mathbf{v}_{1}) + \lambda_{2}T(\mathbf{v}_{2}).$

Essentially, one can think about this linear transformation as stretching a three-dimensional shape by a factor of two in each direction.

MATH 127 (Sections 12.1 to 12.5)

Review of Vector Operations