
Basic Properties of Vectors

Each vector in Rn is uniquely determined by two points

P = (p1, . . . , pn) and Q = (q1, . . . , qn) by identifying the ray
−→
PQ with

the vector v = 〈q1 − p1, . . . , qn − pn〉 based at the origin.

Each vector v = 〈v1, . . . , vn〉 in Rn possesses a magnitude (or length)

||v|| =
√

v21 + · · ·+ v2n .

Given vectors v = 〈v1, . . . , vn〉 and w = 〈w1, . . . ,wn〉 in Rn, we define
their sum to be the vector v + w = 〈v1 + w1, . . . , vn + wn〉.

Given a vector v = 〈v1, . . . , vn〉 in Rn and a scalar λ in R, we define
the scalar product of v by λ to be the vector λv = 〈λv1, . . . , λvn〉.
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Basic Properties of Vectors

Computation with Vectors
Consider the vectors v = 〈1, 2, 3〉 and w = 〈−1, 0, 1〉 in R3.
Compute the vectors 3v, −w, and 3v −w; then, determine the
magnitude ||3v −w|| of the vector 3v −w.

(a.) By definition of scalar multiplication, we have that
3v = 3〈1, 2, 3〉 = 〈3, 6, 9〉 and −w = −〈−1, 0, 1〉 = 〈1, 0,−1〉.
Consequently, it follows that 3v −w = 〈3, 6, 9〉+ 〈1, 0,−1〉 = 〈4, 6, 8〉.
Ultimately, we find that ||3v −w|| =

√
42 + 62 + 82 =

√
116 = 2

√
29.
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Basic Properties of Vectors

Unit vectors are those vectors v such that ||v|| = 1.

Given a nonzero
vector w, we may scale w to obtain a unit vector 1

||w||w.

We refer to the vector ei with 1 in the ith place and 0 elsewhere as
the ith standard basis vector of Rn. For example, the standard basis
vectors of R3 are e1 = 〈1, 0, 0〉, e2 = 〈0, 1, 0〉, and e3 = 〈0, 0, 1〉.

Given two vectors v and w in Rn, we have the Triangle Inequality

||v + w|| ≤ ||v||+ ||w||

with equality if and only if one of v or w is 0 or v = λw (λ > 0).
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Basic Properties of Vectors

Each line in Rn is uniquely determined by a point P = (p1, . . . , pn)
and a directional vector v = 〈v1, . . . , vn〉.

Explicitly, the line ` through
P in the direction of v is given by the parametric equation

r(t) = 〈P〉+ tv = 〈p1 + tv1, . . . , pn + tvn〉,

where 〈P〉 = 〈p1, . . . , pn〉 and t is a real number in (−∞,∞).

Given vectors v = 〈v1, . . . , vn〉 and w = 〈w1, . . . ,wn〉 in Rn, we define
the dot product of v and w as the scalar v ·w = v1w1 + · · ·+ vnwn.

Given vectors v and w in Rn with angle θ between them, we have that

v ·w = ||v|| ||w|| cos θ.

We say that v and w are orthogonal if v ·w = 0. Observe that in R2

or R3, this is equivalent to the notion of “perpendicular” vectors.
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Basic Properties of Vectors

True (a.) or False (b.)
Given that two lines `1 and `2 are both parallel to the line `3, it
must be true that the lines `1 and `2 are parallel.

(a.) True. Lines are uniquely determined by a point P and a directional
vector v. Parallel lines have the same (up to a scalar multiple) directional
vector, so the directional vector of `1 and `2 must be the same.
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Basic Properties of Vectors

True (a.) or False (b.)
Given that two lines `1 and `2 are both orthogonal to the line `3, it
must be true that the lines `1 and `2 are orthogonal.

b.) False. For example, `1 and `2 could be skew. Consider the lines
`1 = t〈1, 1, 1〉, `2 = t〈2, 1, 2〉, and `3 = t〈1, 0,−1〉. We have that

v1 · v3 = 〈1, 1, 1〉 · 〈1, 0,−1〉 = 0 and

v2 · v3 = 〈2, 1, 2〉 · 〈1, 0,−1〉 = 0 but

v1 · v2 = 〈1, 1, 1〉 · 〈2, 1, 2〉 = 5,

hence `1 and `2 are not orthogonal, as their directional vectors are not.
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Basic Properties of Vectors

True (a.) or False (b.)
Given that v ·w < 0, the angle θ between v and w is acute.

b.) False. Combining the formula v ·w = ||v|| ||w|| cos θ with the fact that
||v|| and ||w|| are by definition positive, we conclude that cos θ < 0.
Considering that cos θ ≥ 0 whenever 0 ≤ θ ≤ π

2 or 3π
2 ≤ θ < 2π, we must

have that π
2 < θ < 3π

2 , from which it follow that θ is obtuse.
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Basic Properties of Vectors

True (a.) or False (b.)
Given that u is orthogonal to v and w, u is orthogonal to v + w.

a.) True. Explicitly, we will assume that u = 〈u1, . . . , un〉,
v = 〈v1, . . . , vn〉, and w = 〈w1, . . . ,wn〉. We are given that
u1v1 + · · ·+ unvn = u · v = 0 and u1w1 + · · ·+ unwn = u ·w = 0.
Considering that v + w = 〈v1 + w1, . . . , vn + wn〉, we have that

u · (v + w) = u1〈v1 + w1〉+ · · ·+ un〈vn + wn〉
= 〈u1v1 + · · · unvn〉+ 〈u1w1 + · · ·+ unwn〉 = 0.
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Basic Properties of Vectors

We define a real n × n matrix to be an n × n array of real numbers.
Recall that the sum of two n × n matrices [aij ] and [bij ] is defined to
be the matrix [sij ] such that sij = aij + bij , and the product of the
same n × n matrices is defined to be the matrix [pij ] such that

pij =
n∑

k=1

aikbkj .

Put another way, the entry of [pij ] in the ith row and jth column is
the sum of the products of the entries aik in the ith row and kth
column of [aij ] and bkj in the kth row and jth column of [bij ].

Given a 2× 2 matrix A =
[
a b
c d

]
, the determinant of A is the scalar

det(A) =
a b
c d

= ad − bc.
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Basic Properties of Vectors

Computation with Matrices

Consider the matrices A = [ 1 2
3 4 ] and B =

[
1 0
0 −1

]
. Compute the

matrices A + B and AB; then, find the determinant of A + B.

By definition of matrix addition and multiplication, we have that

A + B =

[
1 + 1 2 + 0
3 + 0 4− 1

]
=

[
2 2
3 3

]
AB =

[
1 · 1 + 2 · 0 1 · 0 + 2 · −1
3 · 1 + 4 · 0 3 · 0 + 4 · −1

]
=

[
1 −2
3 −4

]
.

Consequently, we have that det(A + B) = 2 · 3− 2 · 3 = 0.
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Basic Properties of Vectors

Given vectors v = 〈v1, v2, v3〉 and w = 〈w1,w2,w3〉 in R3, we define
the cross product of v and w to be the vector

v×w =
e1 e2 e3
v1 v2 v3
w1 w2 w3

=
v2 v3
w2 w3

e1 −
v1 v3
w1 w3

e2 +
v1 v2
w1 w2

e3.

One method of computing the cross product is to write the array

e1 e2 e3 e1 e2
v1 v2 v3 v1 v2
w1 w2 w3 w1 w2

;

add the three top-left-to-bottom-right full diagonals; and subtract the
top-right-to-bottom-left full diagonals. From this, one will obtain

v ×w = e1v2w3 + e2v3w1 + e3v1w2

− e1v3w2 − e2v1w3 − e3v2w1.
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Basic Properties of Vectors

Recall the following properties of the cross product.
1 v ×w is orthogonal to both v and w.

2 ||v ×w|| = ||v|| ||w|| sin θ for the angle θ between v and w.

3 v ×w = 0 whenever w = λv for some scalar λ.

4 v ×w = −(w × v), i.e., the cross product is anticommutative.

5 (λv)×w = v × (λw) = λ(v ×w) for any scalar λ.

6 (u + v)×w = u×w + v ×w and u× (v + w) = u× v + u×w

7 ||v ×w||2 = ||v||2||w||2 − (v ·w)2

Properties (5.) and (6.) imply that the cross product is bilinear.
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Planes in R3

Each line in R2 is determined uniquely (up to a scalar multiple) by a
linear equation ax + by = c .

Likewise, each plane in R3 is determined
uniquely (up to a scalar multiple) by an equation ax + by + cz = d .

Explicitly, the plane P through the point P0 = (x0, y0, z0) is uniquely
determined (up to a scalar multiple) by a normal vector n = 〈a, b, c〉
according to the following: a point P lies on P if and only if n and−−→
P0P are orthogonal if and only if n ·

−−→
P0P = 0 if and only if

a(x − x0) + b(y − y0) + c(z − z0) = 0.

By setting d = ax0 + by0 + cz0, we have ax + by + cz = d .

Given three points P = (x0, y0, z0), Q, and R, the equation of the
plane through P, Q, and R can be determined by setting

n =
−→
PQ ×

−→
PR and computing the dot product d = n · 〈x0, y0, z0〉.
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Planes in R3

True (a.) or False (b.)
Given that two lines `1 and `2 are both parallel to the plane P, it
must be true that the lines `1 and `2 are parallel.

b.) False. Lines that are parallel to the plane P are orthogonal to the
normal vector n that defines P. Consequently, the statement in question is
a reformulation of the previous false statement.
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Planes in R3

True (a.) or False (b.)
The plane P defined by the equation x + y = 0 contains the z-axis.

a.) True. We note that the normal vector determining the given plane is
n = 〈1, 1, 0〉. Consequently, the vector e3 = 〈0, 0, 1〉 that determines the
z-axis is orthogonal to n and must therefore be contained in P.

One other way to see it is that all points of the form (0, 0, z) satisfy the
given equation and must therefore lie in the given plane.
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Planes in R3

True (a.) or False (b.)
The plane P1 defined by the equation x + y + z = 1 and the plane
P2 defined by the equation x + 2y + 3z = 1 intersect.

a.) True. Both planes contain the point (1, 0, 0) and therefore intersect at
this point. Further, we find that the vector v = 〈1,−2, 1〉 is orthogonal to
both n1 and n2. Consequently, the line of intersection is given by

r(t) = 〈1, 0, 0〉+ t〈1,−2, 1〉 = 〈t + 1,−2t, t〉.

One other way to see it is to solve the given system of equations. We find
that y + z = 2y + 3z so that y = −2z . Plugging this back into the original
equation gives x − z = 1 so that x = z + 1. Bada-bing, bada-boom.
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Vector Spaces and Linear Transformations

We refer to Rn as a vector space over R. Generally, a vector space
over R is an algebraic structure whose objects are vectors and whose
operations are vector addition and scalar multiplication.

We say that the dimension of a vector space is the (unique) number
of vectors in a basis. For instance, the dimension of Rn is n since the
n vectors e1, . . . , en form a basis for Rn.

Functions between vector spaces are called linear transformations.
Given vector spaces V and W , a linear transformation T : V →W
must satisfy T (λ1v1 + λ2v2) = λ1T (v1) + λ2T (v2). Cross product
with a fixed vector is an example of a linear transformation.

Given that the target space of a linear transformation T is R, we say
that T is a linear functional. Examples of linear functionals include
(1.) the dot product with a fixed vector and (2.) the determinant.
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Vector Spaces and Linear Maps

True (a.) or False (b.)
The constant function T (x , y , z) = 1 is a linear functional.

(b.) False. On the contrary, if T were linear, we would have that
1 = T (2, 0, 0) = 2T (1, 0, 0) = 2. Clearly, this is impossible.
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Vector Spaces and Linear Maps

True (a.) or False (b.)
The function T (x , y , z) = (2x , 2y , 2z) is a linear transformation.

(a.) True. Given vectors v1 = 〈x1, y1, z1〉 and v2 = 〈x2, y2, z2〉 and scalars
λ1 and λ2, we have that

T (λ1v1 + λ2v2) = T (λ1x1 + λ2x2, λ1y1 + λ2y2, λ1z1 + λ2z2)

= (2λ1x1 + 2λ2x2, 2λ1y1 + 2λ2y2, 2λ1z1 + 2λ2z2)

= (2λ1x1, 2λ1y1, 2λ1z1) + (2λ2x2, 2λ2y2, 2λ2z2)

= λ1(2x1, 2y1, 2z1) + λ2(2x2, 2y2, 2z2)

= λ1T (v1) + λ2T (v2).

Essentially, one can think about this linear transformation as stretching a
three-dimensional shape by a factor of two in each direction.
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