Basic Properties of Vectors

- Each vector in \mathbb{R}^{n} is uniquely determined by two points $P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ by identifying the ray $\overrightarrow{P Q}$ with the vector $\mathbf{v}=\left\langle q_{1}-p_{1}, \ldots, q_{n}-p_{n}\right\rangle$ based at the origin.

Basic Properties of Vectors

- Each vector in \mathbb{R}^{n} is uniquely determined by two points $P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ by identifying the ray $\overrightarrow{P Q}$ with the vector $\mathbf{v}=\left\langle q_{1}-p_{1}, \ldots, q_{n}-p_{n}\right\rangle$ based at the origin.
- Each vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ in \mathbb{R}^{n} possesses a magnitude (or length)

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}} .
$$

Basic Properties of Vectors

- Each vector in \mathbb{R}^{n} is uniquely determined by two points $P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ by identifying the ray $\overrightarrow{P Q}$ with the vector $\mathbf{v}=\left\langle q_{1}-p_{1}, \ldots, q_{n}-p_{n}\right\rangle$ based at the origin.
- Each vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ in \mathbb{R}^{n} possesses a magnitude (or length)

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

- Given vectors $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ in \mathbb{R}^{n}, we define their sum to be the vector $\mathbf{v}+\mathbf{w}=\left\langle v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right\rangle$.

Basic Properties of Vectors

- Each vector in \mathbb{R}^{n} is uniquely determined by two points
$P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ by identifying the ray $\overrightarrow{P Q}$ with the vector $\mathbf{v}=\left\langle q_{1}-p_{1}, \ldots, q_{n}-p_{n}\right\rangle$ based at the origin.
- Each vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ in \mathbb{R}^{n} possesses a magnitude (or length)

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

- Given vectors $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ in \mathbb{R}^{n}, we define their sum to be the vector $\mathbf{v}+\mathbf{w}=\left\langle v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right\rangle$.
- Given a vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ in \mathbb{R}^{n} and a scalar λ in \mathbb{R}, we define the scalar product of \mathbf{v} by λ to be the vector $\lambda \mathbf{v}=\left\langle\lambda v_{1}, \ldots, \lambda v_{n}\right\rangle$.

Basic Properties of Vectors

Computation with Vectors

Consider the vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle-1,0,1\rangle$ in \mathbb{R}^{3}. Compute the vectors $3 \mathbf{v},-\mathbf{w}$, and $3 \mathbf{v}-\mathbf{w}$; then, determine the magnitude $\|3 \mathbf{v}-\mathbf{w}\|$ of the vector $3 \mathbf{v}-\mathbf{w}$.

Basic Properties of Vectors

Computation with Vectors

Consider the vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle-1,0,1\rangle$ in \mathbb{R}^{3}. Compute the vectors $3 \mathbf{v},-\mathbf{w}$, and $3 \mathbf{v}-\mathbf{w}$; then, determine the magnitude $\|3 \mathbf{v}-\mathbf{w}\|$ of the vector $3 \mathbf{v}-\mathbf{w}$.
(a.) By definition of scalar multiplication, we have that $3 \mathbf{v}=3\langle 1,2,3\rangle=\langle 3,6,9\rangle$ and $-\mathbf{w}=-\langle-1,0,1\rangle=\langle 1,0,-1\rangle$.

Basic Properties of Vectors

Computation with Vectors

Consider the vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle-1,0,1\rangle$ in \mathbb{R}^{3}. Compute the vectors $3 \mathbf{v},-\mathbf{w}$, and $3 \mathbf{v}-\mathbf{w}$; then, determine the magnitude $\|3 \mathbf{v}-\mathbf{w}\|$ of the vector $3 \mathbf{v}-\mathbf{w}$.
(a.) By definition of scalar multiplication, we have that $3 \mathbf{v}=3\langle 1,2,3\rangle=\langle 3,6,9\rangle$ and $-\mathbf{w}=-\langle-1,0,1\rangle=\langle 1,0,-1\rangle$.
Consequently, it follows that $3 \mathbf{v}-\mathbf{w}=\langle 3,6,9\rangle+\langle 1,0,-1\rangle=\langle 4,6,8\rangle$.

Basic Properties of Vectors

Computation with Vectors

Consider the vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle-1,0,1\rangle$ in \mathbb{R}^{3}. Compute the vectors $3 \mathbf{v},-\mathbf{w}$, and $3 \mathbf{v}-\mathbf{w}$; then, determine the magnitude $\|3 \mathbf{v}-\mathbf{w}\|$ of the vector $3 \mathbf{v}-\mathbf{w}$.
(a.) By definition of scalar multiplication, we have that $3 \mathbf{v}=3\langle 1,2,3\rangle=\langle 3,6,9\rangle$ and $-\mathbf{w}=-\langle-1,0,1\rangle=\langle 1,0,-1\rangle$.
Consequently, it follows that $3 \mathbf{v}-\mathbf{w}=\langle 3,6,9\rangle+\langle 1,0,-1\rangle=\langle 4,6,8\rangle$. Ultimately, we find that $\|3 \mathbf{v}-\mathbf{w}\|=\sqrt{4^{2}+6^{2}+8^{2}}=\sqrt{116}=2 \sqrt{29}$.

Basic Properties of Vectors

- Unit vectors are those vectors \mathbf{v} such that $\|\mathbf{v}\|=1$.

Basic Properties of Vectors

- Unit vectors are those vectors \mathbf{v} such that $\|\mathbf{v}\|=1$. Given a nonzero vector \mathbf{w}, we may scale \mathbf{w} to obtain a unit vector $\frac{1}{\|\mathbf{w}\|} \mathbf{w}$.

Basic Properties of Vectors

- Unit vectors are those vectors \mathbf{v} such that $\|\mathbf{v}\|=1$. Given a nonzero vector \mathbf{w}, we may scale \mathbf{w} to obtain a unit vector $\frac{1}{\|\mathbf{w}\|} \mathbf{w}$.
- We refer to the vector \mathbf{e}_{i} with 1 in the i th place and 0 elsewhere as the i th standard basis vector of \mathbb{R}^{n}.

Basic Properties of Vectors

- Unit vectors are those vectors \mathbf{v} such that $\|\mathbf{v}\|=1$. Given a nonzero vector \mathbf{w}, we may scale \mathbf{w} to obtain a unit vector $\frac{1}{\|\mathbf{w}\|} \mathbf{w}$.
- We refer to the vector \mathbf{e}_{i} with 1 in the i th place and 0 elsewhere as the i th standard basis vector of \mathbb{R}^{n}. For example, the standard basis vectors of \mathbb{R}^{3} are $\mathbf{e}_{1}=\langle 1,0,0\rangle, \mathbf{e}_{2}=\langle 0,1,0\rangle$, and $\mathbf{e}_{3}=\langle 0,0,1\rangle$.

Basic Properties of Vectors

- Unit vectors are those vectors \mathbf{v} such that $\|\mathbf{v}\|=1$. Given a nonzero vector \mathbf{w}, we may scale \mathbf{w} to obtain a unit vector $\frac{1}{\|\mathbf{w}\|} \mathbf{w}$.
- We refer to the vector \mathbf{e}_{i} with 1 in the i th place and 0 elsewhere as the i th standard basis vector of \mathbb{R}^{n}. For example, the standard basis vectors of \mathbb{R}^{3} are $\mathbf{e}_{1}=\langle 1,0,0\rangle, \mathbf{e}_{2}=\langle 0,1,0\rangle$, and $\mathbf{e}_{3}=\langle 0,0,1\rangle$.
- Given two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{n}, we have the Triangle Inequality

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|
$$

with equality if and only if one of \mathbf{v} or \mathbf{w} is 0 or $\mathbf{v}=\lambda \mathbf{w}(\lambda>0)$.

Basic Properties of Vectors

- Each line in \mathbb{R}^{n} is uniquely determined by a point $P=\left(p_{1}, \ldots, p_{n}\right)$ and a directional vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$.

Basic Properties of Vectors

- Each line in \mathbb{R}^{n} is uniquely determined by a point $P=\left(p_{1}, \ldots, p_{n}\right)$ and a directional vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$
\mathbf{r}(t)=\langle P\rangle+t \mathbf{v}=\left\langle p_{1}+t v_{1}, \ldots, p_{n}+t v_{n}\right\rangle
$$

where $\langle P\rangle=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ and t is a real number in $(-\infty, \infty)$.

Basic Properties of Vectors

- Each line in \mathbb{R}^{n} is uniquely determined by a point $P=\left(p_{1}, \ldots, p_{n}\right)$ and a directional vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$
\mathbf{r}(t)=\langle P\rangle+t \mathbf{v}=\left\langle p_{1}+t v_{1}, \ldots, p_{n}+t v_{n}\right\rangle
$$

where $\langle P\rangle=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ in \mathbb{R}^{n}, we define the dot product of \mathbf{v} and \mathbf{w} as the scalar $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+\cdots+v_{n} w_{n}$.

Basic Properties of Vectors

- Each line in \mathbb{R}^{n} is uniquely determined by a point $P=\left(p_{1}, \ldots, p_{n}\right)$ and a directional vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$
\mathbf{r}(t)=\langle P\rangle+t \mathbf{v}=\left\langle p_{1}+t v_{1}, \ldots, p_{n}+t v_{n}\right\rangle
$$

where $\langle P\rangle=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ in \mathbb{R}^{n}, we define the dot product of \mathbf{v} and \mathbf{w} as the scalar $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+\cdots+v_{n} w_{n}$.
- Given vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} with angle θ between them, we have that

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

Basic Properties of Vectors

- Each line in \mathbb{R}^{n} is uniquely determined by a point $P=\left(p_{1}, \ldots, p_{n}\right)$ and a directional vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$
\mathbf{r}(t)=\langle P\rangle+t \mathbf{v}=\left\langle p_{1}+t v_{1}, \ldots, p_{n}+t v_{n}\right\rangle
$$

where $\langle P\rangle=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ in \mathbb{R}^{n}, we define the dot product of \mathbf{v} and \mathbf{w} as the scalar $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+\cdots+v_{n} w_{n}$.
- Given vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} with angle θ between them, we have that

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

We say that \mathbf{v} and \mathbf{w} are orthogonal if $\mathbf{v} \cdot \mathbf{w}=0$.

Basic Properties of Vectors

- Each line in \mathbb{R}^{n} is uniquely determined by a point $P=\left(p_{1}, \ldots, p_{n}\right)$ and a directional vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Explicitly, the line ℓ through P in the direction of \mathbf{v} is given by the parametric equation

$$
\mathbf{r}(t)=\langle P\rangle+t \mathbf{v}=\left\langle p_{1}+t v_{1}, \ldots, p_{n}+t v_{n}\right\rangle
$$

where $\langle P\rangle=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ and t is a real number in $(-\infty, \infty)$.

- Given vectors $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ in \mathbb{R}^{n}, we define the dot product of \mathbf{v} and \mathbf{w} as the scalar $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+\cdots+v_{n} w_{n}$.
- Given vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} with angle θ between them, we have that

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

We say that \mathbf{v} and \mathbf{w} are orthogonal if $\mathbf{v} \cdot \mathbf{w}=0$. Observe that in \mathbb{R}^{2} or \mathbb{R}^{3}, this is equivalent to the notion of "perpendicular" vectors.

Basic Properties of Vectors

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both parallel to the line ℓ_{3}, it must be true that the lines ℓ_{1} and ℓ_{2} are parallel.

Basic Properties of Vectors

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both parallel to the line ℓ_{3}, it must be true that the lines ℓ_{1} and ℓ_{2} are parallel.
(a.) True. Lines are uniquely determined by a point P and a directional vector v. Parallel lines have the same (up to a scalar multiple) directional vector, so the directional vector of ℓ_{1} and ℓ_{2} must be the same.

Basic Properties of Vectors

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both orthogonal to the line ℓ_{3}, it must be true that the lines ℓ_{1} and ℓ_{2} are orthogonal.

Basic Properties of Vectors

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both orthogonal to the line ℓ_{3}, it must be true that the lines ℓ_{1} and ℓ_{2} are orthogonal.
b.) False. For example, ℓ_{1} and ℓ_{2} could be skew. Consider the lines $\ell_{1}=t\langle 1,1,1\rangle, \ell_{2}=t\langle 2,1,2\rangle$, and $\ell_{3}=t\langle 1,0,-1\rangle$. We have that

$$
\begin{aligned}
& \mathbf{v}_{1} \cdot \mathbf{v}_{3}=\langle 1,1,1\rangle \cdot\langle 1,0,-1\rangle=0 \text { and } \\
& \mathbf{v}_{2} \cdot \mathbf{v}_{3}=\langle 2,1,2\rangle \cdot\langle 1,0,-1\rangle=0 \text { but } \\
& \mathbf{v}_{1} \cdot \mathbf{v}_{2}=\langle 1,1,1\rangle \cdot\langle 2,1,2\rangle=5
\end{aligned}
$$

hence ℓ_{1} and ℓ_{2} are not orthogonal, as their directional vectors are not.

Basic Properties of Vectors

True (a.) or False (b.)

Given that $\mathbf{v} \cdot \mathbf{w}<0$, the angle θ between \mathbf{v} and \mathbf{w} is acute.

Basic Properties of Vectors

True (a.) or False (b.)

Given that $\mathbf{v} \cdot \mathbf{w}<0$, the angle θ between \mathbf{v} and \mathbf{w} is acute.
b.) False. Combining the formula $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$ with the fact that $\|\mathbf{v}\|$ and $\|\mathbf{w}\|$ are by definition positive, we conclude that $\cos \theta<0$. Considering that $\cos \theta \geq 0$ whenever $0 \leq \theta \leq \frac{\pi}{2}$ or $\frac{3 \pi}{2} \leq \theta<2 \pi$, we must have that $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$, from which it follow that θ is obtuse.

Basic Properties of Vectors

True (a.) or False (b.)

Given that \mathbf{u} is orthogonal to \mathbf{v} and \mathbf{w}, \mathbf{u} is orthogonal to $\mathbf{v}+\mathbf{w}$.

Basic Properties of Vectors

True (a.) or False (b.)

Given that \mathbf{u} is orthogonal to \mathbf{v} and \mathbf{w}, \mathbf{u} is orthogonal to $\mathbf{v}+\mathbf{w}$.
a.) True. Explicitly, we will assume that $\mathbf{u}=\left\langle u_{1}, \ldots, u_{n}\right\rangle$,
$\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, and $\mathbf{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle$. We are given that $u_{1} v_{1}+\cdots+u_{n} v_{n}=\mathbf{u} \cdot \mathbf{v}=0$ and $u_{1} w_{1}+\cdots+u_{n} w_{n}=\mathbf{u} \cdot \mathbf{w}=0$. Considering that $\mathbf{v}+\mathbf{w}=\left\langle v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right\rangle$, we have that

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =u_{1}\left\langle v_{1}+w_{1}\right\rangle+\cdots+u_{n}\left\langle v_{n}+w_{n}\right\rangle \\
& =\left\langle u_{1} v_{1}+\cdots u_{n} v_{n}\right\rangle+\left\langle u_{1} w_{1}+\cdots+u_{n} w_{n}\right\rangle=0 .
\end{aligned}
$$

Basic Properties of Vectors

- We define a real $n \times n$ matrix to be an $n \times n$ array of real numbers. Recall that the sum of two $n \times n$ matrices $\left[a_{i j}\right]$ and $\left[b_{i j}\right]$ is defined to be the matrix $\left[s_{i j}\right]$ such that $s_{i j}=a_{i j}+b_{i j}$, and the product of the same $n \times n$ matrices is defined to be the matrix [$p_{i j}$] such that

$$
p_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Basic Properties of Vectors

- We define a real $n \times n$ matrix to be an $n \times n$ array of real numbers. Recall that the sum of two $n \times n$ matrices $\left[a_{i j}\right]$ and $\left[b_{i j}\right]$ is defined to be the matrix $\left[s_{i j}\right]$ such that $s_{i j}=a_{i j}+b_{i j}$, and the product of the same $n \times n$ matrices is defined to be the matrix [$p_{i j}$] such that

$$
p_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Put another way, the entry of $\left[p_{i j}\right]$ in the i th row and j th column is the sum of the products of the entries $a_{i k}$ in the i th row and k th column of $\left[a_{i j}\right]$ and $b_{k j}$ in the k th row and j th column of $\left[b_{i j}\right]$.

Basic Properties of Vectors

- We define a real $n \times n$ matrix to be an $n \times n$ array of real numbers. Recall that the sum of two $n \times n$ matrices $\left[a_{i j}\right]$ and $\left[b_{i j}\right]$ is defined to be the matrix $\left[s_{i j}\right]$ such that $s_{i j}=a_{i j}+b_{i j}$, and the product of the same $n \times n$ matrices is defined to be the matrix $\left[p_{i j}\right]$ such that

$$
p_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Put another way, the entry of $\left[p_{i j}\right]$ in the i th row and j th column is the sum of the products of the entries $a_{i k}$ in the i th row and k th column of $\left[a_{i j}\right]$ and $b_{k j}$ in the k th row and j th column of $\left[b_{i j}\right]$.

- Given a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the determinant of A is the scalar

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Basic Properties of Vectors

Computation with Matrices

Consider the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Compute the matrices $A+B$ and $A B$; then, find the determinant of $A+B$.

Basic Properties of Vectors

Computation with Matrices

Consider the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Compute the matrices $A+B$ and $A B$; then, find the determinant of $A+B$.

By definition of matrix addition and multiplication, we have that

$$
\begin{aligned}
A+B & =\left[\begin{array}{ll}
1+1 & 2+0 \\
3+0 & 4-1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right] \\
A B & =\left[\begin{array}{ll}
1 \cdot 1+2 \cdot 0 & 1 \cdot 0+2 \cdot-1 \\
3 \cdot 1+4 \cdot 0 & 3 \cdot 0+4 \cdot-1
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right] .
\end{aligned}
$$

Basic Properties of Vectors

Computation with Matrices

Consider the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Compute the matrices $A+B$ and $A B$; then, find the determinant of $A+B$.

By definition of matrix addition and multiplication, we have that

$$
\begin{aligned}
A+B & =\left[\begin{array}{ll}
1+1 & 2+0 \\
3+0 & 4-1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right] \\
A B & =\left[\begin{array}{ll}
1 \cdot 1+2 \cdot 0 & 1 \cdot 0+2 \cdot-1 \\
3 \cdot 1+4 \cdot 0 & 3 \cdot 0+4 \cdot-1
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right] .
\end{aligned}
$$

Consequently, we have that $\operatorname{det}(A+B)=2 \cdot 3-2 \cdot 3=0$.

Basic Properties of Vectors

- Given vectors $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ in \mathbb{R}^{3}, we define the cross product of \mathbf{v} and \mathbf{w} to be the vector

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \mathbf{e}_{3} .
$$

Basic Properties of Vectors

- Given vectors $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ in \mathbb{R}^{3}, we define the cross product of \mathbf{v} and \mathbf{w} to be the vector

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \mathbf{e}_{3} .
$$

One method of computing the cross product is to write the array

\mathbf{e}_{1}	\mathbf{e}_{2}	\mathbf{e}_{3}	\mathbf{e}_{1}	\mathbf{e}_{2}
v_{1}	v_{2}	v_{3}	v_{1}	v_{2}
w_{1}	w_{2}	w_{3}	w_{1}	w_{2}

add the three top-left-to-bottom-right full diagonals; and subtract the top-right-to-bottom-left full diagonals.

Basic Properties of Vectors

- Given vectors $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ in \mathbb{R}^{3}, we define the cross product of \mathbf{v} and \mathbf{w} to be the vector

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \mathbf{e}_{3} .
$$

One method of computing the cross product is to write the array

\mathbf{e}_{1}	\mathbf{e}_{2}	\mathbf{e}_{3}	\mathbf{e}_{1}	\mathbf{e}_{2}
v_{1}	v_{2}	v_{3}	v_{1}	v_{2}
w_{1}	w_{2}	w_{3}	w_{1}	w_{2}

add the three top-left-to-bottom-right full diagonals; and subtract the top-right-to-bottom-left full diagonals. From this, one will obtain

$$
\begin{aligned}
\mathbf{v} \times \mathbf{w} & =\mathbf{e}_{1} v_{2} w_{3}+\mathbf{e}_{2} v_{3} w_{1}+\mathbf{e}_{3} v_{1} w_{2} \\
& -\mathbf{e}_{1} v_{3} w_{2}-\mathbf{e}_{2} v_{1} w_{3}-\mathbf{e}_{3} v_{2} w_{1}
\end{aligned}
$$

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.
(3) $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ whenever $\mathbf{w}=\lambda \mathbf{v}$ for some scalar λ.

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.
(3) $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ whenever $\mathbf{w}=\lambda \mathbf{v}$ for some scalar λ.
(9) $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.
(3) $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ whenever $\mathbf{w}=\lambda \mathbf{v}$ for some scalar λ.
(9) $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.
(3) ($\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$ for any scalar λ.

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.
(3) $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ whenever $\mathbf{w}=\lambda \mathbf{v}$ for some scalar λ.
(9) $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.
(3) ($\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$ for any scalar λ.
(6) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}$ and $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.
(3) $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ whenever $\mathbf{w}=\lambda \mathbf{v}$ for some scalar λ.
(9) $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.
(5) $(\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$ for any scalar λ.
(6) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}$ and $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(3) $\|\mathbf{v} \times \mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2}-(\mathbf{v} \cdot \mathbf{w})^{2}$

Basic Properties of Vectors

- Recall the following properties of the cross product.
(1) $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
(2) $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ for the angle θ between \mathbf{v} and \mathbf{w}.
(3) $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ whenever $\mathbf{w}=\lambda \mathbf{v}$ for some scalar λ.
(9) $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$, i.e., the cross product is anticommutative.
(3) $(\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$ for any scalar λ.
(6) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}$ and $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(3) $\|\mathbf{v} \times \mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2}-(\mathbf{v} \cdot \mathbf{w})^{2}$

Properties (5.) and (6.) imply that the cross product is bilinear.

Planes in \mathbb{R}^{3}

- Each line in \mathbb{R}^{2} is determined uniquely (up to a scalar multiple) by a linear equation $a x+b y=c$.

Planes in \mathbb{R}^{3}

- Each line in \mathbb{R}^{2} is determined uniquely (up to a scalar multiple) by a linear equation $a x+b y=c$. Likewise, each plane in \mathbb{R}^{3} is determined uniquely (up to a scalar multiple) by an equation $a x+b y+c z=d$.

Planes in \mathbb{R}^{3}

- Each line in \mathbb{R}^{2} is determined uniquely (up to a scalar multiple) by a linear equation $a x+b y=c$. Likewise, each plane in \mathbb{R}^{3} is determined uniquely (up to a scalar multiple) by an equation $a x+b y+c z=d$.
- Explicitly, the plane \mathcal{P} through the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is uniquely determined (up to a scalar multiple) by a normal vector $\mathbf{n}=\langle a, b, c\rangle$ according to the following: a point P lies on \mathcal{P} if and only if \mathbf{n} and $\overrightarrow{P_{0} P}$ are orthogonal if and only if $n \cdot \overrightarrow{P_{0} P}=0$ if and only if

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

Planes in \mathbb{R}^{3}

- Each line in \mathbb{R}^{2} is determined uniquely (up to a scalar multiple) by a linear equation $a x+b y=c$. Likewise, each plane in \mathbb{R}^{3} is determined uniquely (up to a scalar multiple) by an equation $a x+b y+c z=d$.
- Explicitly, the plane \mathcal{P} through the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is uniquely determined (up to a scalar multiple) by a normal vector $\mathbf{n}=\langle a, b, c\rangle$ according to the following: a point P lies on \mathcal{P} if and only if \mathbf{n} and $\overrightarrow{P_{0} P}$ are orthogonal if and only if $n \cdot \overrightarrow{P_{0} P}=0$ if and only if

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

By setting $d=a x_{0}+b y_{0}+c z_{0}$, we have $a x+b y+c z=d$.

Planes in \mathbb{R}^{3}

- Each line in \mathbb{R}^{2} is determined uniquely (up to a scalar multiple) by a linear equation $a x+b y=c$. Likewise, each plane in \mathbb{R}^{3} is determined uniquely (up to a scalar multiple) by an equation $a x+b y+c z=d$.
- Explicitly, the plane \mathcal{P} through the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is uniquely determined (up to a scalar multiple) by a normal vector $\mathbf{n}=\langle a, b, c\rangle$ according to the following: a point P lies on \mathcal{P} if and only if \mathbf{n} and $\overrightarrow{P_{0} P}$ are orthogonal if and only if $n \cdot \overrightarrow{P_{0} P}=0$ if and only if

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

By setting $d=a x_{0}+b y_{0}+c z_{0}$, we have $a x+b y+c z=d$.

- Given three points $P=\left(x_{0}, y_{0}, z_{0}\right), Q$, and R, the equation of the plane through P, Q, and R can be determined by setting $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$ and computing the dot product $d=\mathbf{n} \cdot\left\langle x_{0}, y_{0}, z_{0}\right\rangle$.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both parallel to the plane \mathcal{P}, it must be true that the lines ℓ_{1} and ℓ_{2} are parallel.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both parallel to the plane \mathcal{P}, it must be true that the lines ℓ_{1} and ℓ_{2} are parallel.
b.) False. Lines that are parallel to the plane \mathcal{P} are orthogonal to the normal vector \mathbf{n} that defines \mathcal{P}. Consequently, the statement in question is a reformulation of the previous false statement.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both orthogonal to the plane \mathcal{P}, it must be true that the lines ℓ_{1} and ℓ_{2} are parallel.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

Given that two lines ℓ_{1} and ℓ_{2} are both orthogonal to the plane \mathcal{P}, it must be true that the lines ℓ_{1} and ℓ_{2} are parallel.
a.) True. Lines that are orthogonal to the plane \mathcal{P} are parallel to the normal vector \mathbf{n} that defines \mathcal{P}. Consequently, the statement in question is a reformulation of the first true statement.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

The plane \mathcal{P} defined by the equation $x+y=0$ contains the z-axis.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

The plane \mathcal{P} defined by the equation $x+y=0$ contains the z-axis.
a.) True. We note that the normal vector determining the given plane is $\mathbf{n}=\langle 1,1,0\rangle$. Consequently, the vector $\mathbf{e}_{3}=\langle 0,0,1\rangle$ that determines the z-axis is orthogonal to \mathbf{n} and must therefore be contained in \mathcal{P}.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

The plane \mathcal{P} defined by the equation $x+y=0$ contains the z-axis.
a.) True. We note that the normal vector determining the given plane is $\mathbf{n}=\langle 1,1,0\rangle$. Consequently, the vector $\mathbf{e}_{3}=\langle 0,0,1\rangle$ that determines the z-axis is orthogonal to \mathbf{n} and must therefore be contained in \mathcal{P}.

One other way to see it is that all points of the form $(0,0, z)$ satisfy the given equation and must therefore lie in the given plane.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

The plane \mathcal{P}_{1} defined by the equation $x+y+z=1$ and the plane \mathcal{P}_{2} defined by the equation $x+2 y+3 z=1$ intersect.

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

The plane \mathcal{P}_{1} defined by the equation $x+y+z=1$ and the plane \mathcal{P}_{2} defined by the equation $x+2 y+3 z=1$ intersect.
a.) True. Both planes contain the point $(1,0,0)$ and therefore intersect at this point. Further, we find that the vector $\mathbf{v}=\langle 1,-2,1\rangle$ is orthogonal to both \mathbf{n}_{1} and \mathbf{n}_{2}. Consequently, the line of intersection is given by

$$
\mathbf{r}(t)=\langle 1,0,0\rangle+t\langle 1,-2,1\rangle=\langle t+1,-2 t, t\rangle
$$

Planes in \mathbb{R}^{3}

True (a.) or False (b.)

The plane \mathcal{P}_{1} defined by the equation $x+y+z=1$ and the plane \mathcal{P}_{2} defined by the equation $x+2 y+3 z=1$ intersect.
a.) True. Both planes contain the point $(1,0,0)$ and therefore intersect at this point. Further, we find that the vector $\mathbf{v}=\langle 1,-2,1\rangle$ is orthogonal to both \mathbf{n}_{1} and \mathbf{n}_{2}. Consequently, the line of intersection is given by

$$
\mathbf{r}(t)=\langle 1,0,0\rangle+t\langle 1,-2,1\rangle=\langle t+1,-2 t, t\rangle
$$

One other way to see it is to solve the given system of equations. We find that $y+z=2 y+3 z$ so that $y=-2 z$. Plugging this back into the original equation gives $x-z=1$ so that $x=z+1$. Bada-bing, bada-boom.

Vector Spaces and Linear Transformations

- We refer to \mathbb{R}^{n} as a vector space over \mathbb{R}. Generally, a vector space over \mathbb{R} is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.

Vector Spaces and Linear Transformations

- We refer to \mathbb{R}^{n} as a vector space over \mathbb{R}. Generally, a vector space over \mathbb{R} is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.
- We say that the dimension of a vector space is the (unique) number of vectors in a basis. For instance, the dimension of \mathbb{R}^{n} is n since the n vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ form a basis for \mathbb{R}^{n}.

Vector Spaces and Linear Transformations

- We refer to \mathbb{R}^{n} as a vector space over \mathbb{R}. Generally, a vector space over \mathbb{R} is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.
- We say that the dimension of a vector space is the (unique) number of vectors in a basis. For instance, the dimension of \mathbb{R}^{n} is n since the n vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ form a basis for \mathbb{R}^{n}.
- Functions between vector spaces are called linear transformations. Given vector spaces V and W, a linear transformation $T: V \rightarrow W$ must satisfy $T\left(\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{1} T\left(\mathbf{v}_{1}\right)+\lambda_{2} T\left(\mathbf{v}_{2}\right)$. Cross product with a fixed vector is an example of a linear transformation.

Vector Spaces and Linear Transformations

- We refer to \mathbb{R}^{n} as a vector space over \mathbb{R}. Generally, a vector space over \mathbb{R} is an algebraic structure whose objects are vectors and whose operations are vector addition and scalar multiplication.
- We say that the dimension of a vector space is the (unique) number of vectors in a basis. For instance, the dimension of \mathbb{R}^{n} is n since the n vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ form a basis for \mathbb{R}^{n}.
- Functions between vector spaces are called linear transformations. Given vector spaces V and W, a linear transformation $T: V \rightarrow W$ must satisfy $T\left(\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{1} T\left(\mathbf{v}_{1}\right)+\lambda_{2} T\left(\mathbf{v}_{2}\right)$. Cross product with a fixed vector is an example of a linear transformation.
- Given that the target space of a linear transformation T is \mathbb{R}, we say that T is a linear functional. Examples of linear functionals include (1.) the dot product with a fixed vector and (2.) the determinant.

Vector Spaces and Linear Maps

True (a.) or False (b.)

The constant function $T(x, y, z)=1$ is a linear functional.

Vector Spaces and Linear Maps

True (a.) or False (b.)

The constant function $T(x, y, z)=1$ is a linear functional.
(b.) False. On the contrary, if T were linear, we would have that $1=T(2,0,0)=2 T(1,0,0)=2$. Clearly, this is impossible.

Vector Spaces and Linear Maps

True (a.) or False (b.)

The function $T(x, y, z)=(2 x, 2 y, 2 z)$ is a linear transformation.

Vector Spaces and Linear Maps

True (a.) or False (b.)

The function $T(x, y, z)=(2 x, 2 y, 2 z)$ is a linear transformation.
(a.) True. Given vectors $\mathbf{v}_{1}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\mathbf{v}_{2}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ and scalars λ_{1} and λ_{2}, we have that

$$
\begin{aligned}
T\left(\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right) & =T\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}, \lambda_{1} y_{1}+\lambda_{2} y_{2}, \lambda_{1} z_{1}+\lambda_{2} z_{2}\right) \\
& =\left(2 \lambda_{1} x_{1}+2 \lambda_{2} x_{2}, 2 \lambda_{1} y_{1}+2 \lambda_{2} y_{2}, 2 \lambda_{1} z_{1}+2 \lambda_{2} z_{2}\right) \\
& =\left(2 \lambda_{1} x_{1}, 2 \lambda_{1} y_{1}, 2 \lambda_{1} z_{1}\right)+\left(2 \lambda_{2} x_{2}, 2 \lambda_{2} y_{2}, 2 \lambda_{2} z_{2}\right) \\
& =\lambda_{1}\left(2 x_{1}, 2 y_{1}, 2 z_{1}\right)+\lambda_{2}\left(2 x_{2}, 2 y_{2}, 2 z_{2}\right) \\
& =\lambda_{1} T\left(\mathbf{v}_{1}\right)+\lambda_{2} T\left(\mathbf{v}_{2}\right) .
\end{aligned}
$$

Vector Spaces and Linear Maps

True (a.) or False (b.)

The function $T(x, y, z)=(2 x, 2 y, 2 z)$ is a linear transformation.
(a.) True. Given vectors $\mathbf{v}_{1}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\mathbf{v}_{2}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ and scalars λ_{1} and λ_{2}, we have that

$$
\begin{aligned}
T\left(\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right) & =T\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}, \lambda_{1} y_{1}+\lambda_{2} y_{2}, \lambda_{1} z_{1}+\lambda_{2} z_{2}\right) \\
& =\left(2 \lambda_{1} x_{1}+2 \lambda_{2} x_{2}, 2 \lambda_{1} y_{1}+2 \lambda_{2} y_{2}, 2 \lambda_{1} z_{1}+2 \lambda_{2} z_{2}\right) \\
& =\left(2 \lambda_{1} x_{1}, 2 \lambda_{1} y_{1}, 2 \lambda_{1} z_{1}\right)+\left(2 \lambda_{2} x_{2}, 2 \lambda_{2} y_{2}, 2 \lambda_{2} z_{2}\right) \\
& =\lambda_{1}\left(2 x_{1}, 2 y_{1}, 2 z_{1}\right)+\lambda_{2}\left(2 x_{2}, 2 y_{2}, 2 z_{2}\right) \\
& =\lambda_{1} T\left(\mathbf{v}_{1}\right)+\lambda_{2} T\left(\mathbf{v}_{2}\right) .
\end{aligned}
$$

Essentially, one can think about this linear transformation as stretching a three-dimensional shape by a factor of two in each direction.

