Triple Integration over Boxes

@ Going from double integration to triple integration is by-and-large an
easy generalization that preserves the usual good properties.
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Triple Integration over Boxes

@ Going from double integration to triple integration is by-and-large an
easy generalization that preserves the usual good properties.

@ Given a function f(x,y, z) such that the quantity
= lim f(Pijk)AxAyAz
||P||a0§;;kzl Py

exists for all possible partitions Pjj of the box
= [a, b] X [c,d] X [p, q], we say that f(x,y,z) is (Riemann)
integrable with triple integral

///Bf(x,y,z)dV—L.
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Properties of Triple Integrals over Boxes

e Given that f(x,y, z) is a continuous function on a box B, we have
that f(x,y, z) is (Riemann) integrable on B.
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Properties of Triple Integrals over Boxes

e Given that f(x,y, z) is a continuous function on a box B, we have
that f(x,y, z) is (Riemann) integrable on B. Particularly, if f(x, y, z)
is differentiable on a box B, then it is integrable on B.
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Properties of Triple Integrals over Boxes

e Given that f(x,y, z) is a continuous function on a box B, we have
that f(x,y, z) is (Riemann) integrable on B. Particularly, if f(x, y, z)
is differentiable on a box B, then it is integrable on B.

@ Like with double integrals, triple integrals are linear.
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Properties of Triple Integrals over Boxes

e Given that f(x,y, z) is a continuous function on a box B, we have
that f(x,y, z) is (Riemann) integrable on B. Particularly, if f(x, y, z)
is differentiable on a box B, then it is integrable on B.

@ Like with double integrals, triple integrals are linear.

@ Fubini's Theorem still applies to triple integrals,
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Properties of Triple Integrals over Boxes

e Given that f(x,y, z) is a continuous function on a box B, we have
that f(x,y, z) is (Riemann) integrable on B. Particularly, if f(x, y, z)
is differentiable on a box B, then it is integrable on B.

@ Like with double integrals, triple integrals are linear.

@ Fubini's Theorem still applies to triple integrals, i.e., the triple integral
of f(x,y,z) on the box B = [a, b] x [c, d] X [p, q] is given by

b pd pq
// f(x,y,z)dV:/ / / f(x,y,z)dzdy dx.
B a c Jp

Further, this iterated integral may be evaluated in 6 =3 -2 -1 ways.
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Computing Double Integrals over Rectangles

True (a.) or False (b.)

The volume of the box B = [a, b] x [c, d] x [p, q] is given by

q pd rb
/ / / 1 dx dy dz.
p Jc Ja
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Computing Double Integrals over Rectangles

True (a.) or False (b.)

The volume of the box B = [a, b] x [c, d] x [p, q] is given by

q pd rb
/ / / 1 dx dy dz.
p Jc Ja

(a.) True.
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Computing Double Integrals over Rectangles

True (a.) or False (b.)

The volume of the box B = [a, b] x [c, d] x [p, q] is given by

q pd rb
/ / / 1 dx dy dz.
p Jc Ja

(a.) True. The triple integral evaluates to (b — a)(d — ¢)(qg — p), i.e.,
length x width x height. Of course, this is the volume of a box.
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Triple Integration over General Regions

o If W is an x-simple region with projection D onto the yz-plane, i.e.,
c<y<d, p<z<gq,and gi(y,z) < x < gy, z), then

/// (x,y,2)dV = //(/::yy xy,z)dx)dA
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Triple Integration over General Regions

o If W is an x-simple region with projection D onto the yz-plane, i.e.,
c<y<d, p<z<gq,and gi(y,z) < x < gy, z), then

/// (x,y,2)dV = //(/::yy xy,z)dx)dA

e If W is a y-simple region with projection D onto the xz-plane, i.e.,
a<x<b,p<z<g,and hi(x,z) <y < hy(x, z), then

[l o= [ o)
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Triple Integration over General Regions

o If W is an x-simple region with projection D onto the yz-plane, i.e.,
c<y<d, p<z<gq,and gi(y,z) < x < gy, z), then

/// (eyzav = [[ (/gg(yy xy,z)dx)dA

e If W is a y-simple region with projection D onto the xz-plane, i.e.,
a<x<b,p<z<g,and hi(x,z) <y < hy(x, z), then

[l o= [ o)

o If W is a z-simple region with projection D onto the xy-plane, i.e.,
a<x<b,c<y<d, and ki(x,y) < z < ka(x, y), then

/// (2= [[ </kk((yy xy,z)dz)dA
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y,z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y,z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By drawing the graphs of each function in a Cartesian plane, we obtain
numerical inequalities for each variable.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y,z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By drawing the graphs of each function in a Cartesian plane, we obtain
numerical inequalities for each variable. Consequently, we have that
0<x<1,0<y<2, and0<z<4.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y,z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By drawing the graphs of each function in a Cartesian plane, we obtain
numerical inequalities for each variable. Consequently, we have that
0<x<1,0<y <2 and 0 <z < 4. We can now project VW onto each
of the three coordinate planes by manipulating these inequalities.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xy-plane, we can view W as a z-simple region.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xy-plane, we can view W as a z-simple region.
Considering that the xy-plane can be written as z = 0, the equation
z =4 — y? meets the xy-plane at the line y = 2.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region W bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xy-plane, we can view W as a z-simple region.
Considering that the xy-plane can be written as z = 0, the equation

z =4 — y? meets the xy-plane at the line y = 2. We have therefore that
0<x<1,2x<y<2 and 0<z<4—y?sothat

1 2 r4—y?
/// xyde:/ / / xyz dz dy dx.
w 0 J2x JO
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x,y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the yz-plane, we can view W as an x-simple region.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x,y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the yz-plane, we can view W as an x-simple region.
We note that y = 2x implies that x = .
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x,y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the yz-plane, we can view W as an x-simple region.
We note that y = 2x implies that x = %. We have therefore that
O§y§2,O§z§4—y2,and0§x§%sothat

2 pd—y? py/2
/// xyz dV :/ / / xyz dx dz dy.
w 0 0 0
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xz-plane, we can view W as a y-simple region.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xz-plane, we can view W as a y-simple region. We
note that y = /4 — z and z = 4 — 4x2, but there are no restrictions on x.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xz-plane, we can view W as a y-simple region. We
note that y = /4 — z and z = 4 — 4x2, but there are no restrictions on x.
Consequently, we havethat 0 < x <land 0 <z <4 — 4x2; all that
remains to find are the bounds on y.
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Computing Triple Integrals over General Regions

Converting to an lterated Integral

Give three iterated integrals of the function f(x, y, z) = xyz over
the region WV bounded by the equations z = 4 — y?, y = 2x,
z =0, and x = 0 by projecting onto each of the coordinate planes.

By projecting onto the xz-plane, we can view W as a y-simple region. We
note that y = /4 — z and z = 4 — 4x2, but there are no restrictions on x.
Consequently, we havethat 0 < x <land 0 <z <4 — 4x2; all that
remains to find are the bounds on y. Based on what we said previously, we
must have that 2x < y < +/4 — z so that

2 ph—4x? A=z
/// xyde:/ / / xyz dy dz dx.
w 0 JO 2x
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