Triple Integration over Boxes

- Going from double integration to triple integration is by-and-large an easy generalization that preserves the usual good properties.

Triple Integration over Boxes

- Going from double integration to triple integration is by-and-large an easy generalization that preserves the usual good properties.
- Given a function $f(x, y, z)$ such that the quantity

$$
L=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{\ell} f\left(P_{i j k}\right) \Delta x \Delta y \Delta z
$$

exists for all possible partitions $P_{i j k}$ of the box $\mathcal{B}=[a, b] \times[c, d] \times[p, q]$, we say that $f(x, y, z)$ is (Riemann) integrable with triple integral

$$
\iiint_{\mathcal{B}} f(x, y, z) d V=L
$$

Properties of Triple Integrals over Boxes

- Given that $f(x, y, z)$ is a continuous function on a box \mathcal{B}, we have that $f(x, y, z)$ is (Riemann) integrable on \mathcal{B}.

Properties of Triple Integrals over Boxes

- Given that $f(x, y, z)$ is a continuous function on a box \mathcal{B}, we have that $f(x, y, z)$ is (Riemann) integrable on \mathcal{B}. Particularly, if $f(x, y, z)$ is differentiable on a box \mathcal{B}, then it is integrable on \mathcal{B}.

Properties of Triple Integrals over Boxes

- Given that $f(x, y, z)$ is a continuous function on a box \mathcal{B}, we have that $f(x, y, z)$ is (Riemann) integrable on \mathcal{B}. Particularly, if $f(x, y, z)$ is differentiable on a box \mathcal{B}, then it is integrable on \mathcal{B}.
- Like with double integrals, triple integrals are linear.

Properties of Triple Integrals over Boxes

- Given that $f(x, y, z)$ is a continuous function on a box \mathcal{B}, we have that $f(x, y, z)$ is (Riemann) integrable on \mathcal{B}. Particularly, if $f(x, y, z)$ is differentiable on a box \mathcal{B}, then it is integrable on \mathcal{B}.
- Like with double integrals, triple integrals are linear.
- Fubini's Theorem still applies to triple integrals,

Properties of Triple Integrals over Boxes

- Given that $f(x, y, z)$ is a continuous function on a box \mathcal{B}, we have that $f(x, y, z)$ is (Riemann) integrable on \mathcal{B}. Particularly, if $f(x, y, z)$ is differentiable on a box \mathcal{B}, then it is integrable on \mathcal{B}.
- Like with double integrals, triple integrals are linear.
- Fubini's Theorem still applies to triple integrals, i.e., the triple integral of $f(x, y, z)$ on the box $\mathcal{B}=[a, b] \times[c, d] \times[p, q]$ is given by

$$
\iiint_{\mathcal{B}} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{p}^{q} f(x, y, z) d z d y d x
$$

Further, this iterated integral may be evaluated in $6=3 \cdot 2 \cdot 1$ ways.

Computing Double Integrals over Rectangles

True (a.) or False (b.)

The volume of the box $\mathcal{B}=[a, b] \times[c, d] \times[p, q]$ is given by

$$
\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} 1 d x d y d z
$$

Computing Double Integrals over Rectangles

True (a.) or False (b.)

The volume of the box $\mathcal{B}=[a, b] \times[c, d] \times[p, q]$ is given by

$$
\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} 1 d x d y d z
$$

(a.) True.

Computing Double Integrals over Rectangles

True (a.) or False (b.)

The volume of the box $\mathcal{B}=[a, b] \times[c, d] \times[p, q]$ is given by

$$
\int_{p}^{a} \int_{c}^{d} \int_{a}^{b} 1 d x d y d z
$$

(a.) True. The triple integral evaluates to $(b-a)(d-c)(q-p)$, i.e., length \times width \times height. Of course, this is the volume of a box.

Triple Integration over General Regions

- If \mathcal{W} is an x-simple region with projection \mathcal{D} onto the $y z$-plane, i.e., $c \leq y \leq d, p \leq z \leq q$, and $g_{1}(y, z) \leq x \leq g_{2}(y, z)$, then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{g_{1}(y, z)}^{g_{2}(y, z)} f(x, y, z) d x\right) d A
$$

Triple Integration over General Regions

- If \mathcal{W} is an x-simple region with projection \mathcal{D} onto the $y z$-plane, i.e., $c \leq y \leq d, p \leq z \leq q$, and $g_{1}(y, z) \leq x \leq g_{2}(y, z)$, then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{g_{1}(y, z)}^{g_{2}(y, z)} f(x, y, z) d x\right) d A
$$

- If \mathcal{W} is a y-simple region with projection \mathcal{D} onto the xz-plane, i.e., $a \leq x \leq b, p \leq z \leq q$, and $h_{1}(x, z) \leq y \leq h_{2}(x, z)$, then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{h_{1}(x, z)}^{h_{2}(x, z)} f(x, y, z) d y\right) d A
$$

Triple Integration over General Regions

- If \mathcal{W} is an x-simple region with projection \mathcal{D} onto the $y z$-plane, i.e., $c \leq y \leq d, p \leq z \leq q$, and $g_{1}(y, z) \leq x \leq g_{2}(y, z)$, then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{g_{1}(y, z)}^{g_{2}(y, z)} f(x, y, z) d x\right) d A
$$

- If \mathcal{W} is a y-simple region with projection \mathcal{D} onto the xz-plane, i.e., $a \leq x \leq b, p \leq z \leq q$, and $h_{1}(x, z) \leq y \leq h_{2}(x, z)$, then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{h_{1}(x, z)}^{h_{2}(x, z)} f(x, y, z) d y\right) d A .
$$

- If \mathcal{W} is a z-simple region with projection \mathcal{D} onto the $x y$-plane, i.e., $a \leq x \leq b, c \leq y \leq d$, and $k_{1}(x, y) \leq z \leq k_{2}(x, y)$, then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{k_{1}(x, y)}^{k_{2}(x, y)} f(x, y, z) d z\right) d A .
$$

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By drawing the graphs of each function in a Cartesian plane, we obtain numerical inequalities for each variable.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By drawing the graphs of each function in a Cartesian plane, we obtain numerical inequalities for each variable. Consequently, we have that $0 \leq x \leq 1,0 \leq y \leq 2$, and $0 \leq z \leq 4$.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By drawing the graphs of each function in a Cartesian plane, we obtain numerical inequalities for each variable. Consequently, we have that $0 \leq x \leq 1,0 \leq y \leq 2$, and $0 \leq z \leq 4$. We can now project \mathcal{W} onto each of the three coordinate planes by manipulating these inequalities.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x y$-plane, we can view \mathcal{W} as a z-simple region.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x y$-plane, we can view \mathcal{W} as a z-simple region. Considering that the $x y$-plane can be written as $z=0$, the equation $z=4-y^{2}$ meets the $x y$-plane at the line $y=2$.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x y$-plane, we can view \mathcal{W} as a z-simple region. Considering that the $x y$-plane can be written as $z=0$, the equation $z=4-y^{2}$ meets the $x y$-plane at the line $y=2$. We have therefore that $0 \leq x \leq 1,2 x \leq y \leq 2$, and $0 \leq z \leq 4-y^{2}$ so that

$$
\iiint_{\mathcal{W}} x y z d V=\int_{0}^{1} \int_{2 x}^{2} \int_{0}^{4-y^{2}} x y z d z d y d x
$$

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $y z$-plane, we can view \mathcal{W} as an x-simple region.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $y z$-plane, we can view \mathcal{W} as an x-simple region. We note that $y=2 x$ implies that $x=\frac{y}{2}$.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $y z$-plane, we can view \mathcal{W} as an x-simple region. We note that $y=2 x$ implies that $x=\frac{y}{2}$. We have therefore that $0 \leq y \leq 2,0 \leq z \leq 4-y^{2}$, and $0 \leq x \leq \frac{y}{2}$ so that

$$
\iiint_{\mathcal{W}} x y z d V=\int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{y / 2} x y z d x d z d y
$$

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x z$-plane, we can view \mathcal{W} as a y-simple region.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x z$-plane, we can view \mathcal{W} as a y-simple region. We note that $y=\sqrt{4-z}$ and $z=4-4 x^{2}$, but there are no restrictions on x.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x z$-plane, we can view \mathcal{W} as a y-simple region. We note that $y=\sqrt{4-z}$ and $z=4-4 x^{2}$, but there are no restrictions on x. Consequently, we have that $0 \leq x \leq 1$ and $0 \leq z \leq 4-4 x^{2}$; all that remains to find are the bounds on y.

Computing Triple Integrals over General Regions

Converting to an Iterated Integral

Give three iterated integrals of the function $f(x, y, z)=x y z$ over the region \mathcal{W} bounded by the equations $z=4-y^{2}, y=2 x$, $z=0$, and $x=0$ by projecting onto each of the coordinate planes.

By projecting onto the $x z$-plane, we can view \mathcal{W} as a y-simple region. We note that $y=\sqrt{4-z}$ and $z=4-4 x^{2}$, but there are no restrictions on x. Consequently, we have that $0 \leq x \leq 1$ and $0 \leq z \leq 4-4 x^{2}$; all that remains to find are the bounds on y. Based on what we said previously, we must have that $2 x \leq y \leq \sqrt{4-z}$ so that

$$
\iiint_{\mathcal{W}} x y z d V=\int_{0}^{2} \int_{0}^{4-4 x^{2}} \int_{2 x}^{\sqrt{4-z}} x y z d y d z d x
$$

