Lagrange Multipliers

- We have previously explored the topics of (a.) local extrema and (b.) global (or absolute) extrema.

Lagrange Multipliers

- We have previously explored the topics of (a.) local extrema and (b.) global (or absolute) extrema. Each topic revolved around describing a function of several variables by the largest (or smallest) values it takes (a.) on a small open ball around a point P or (b.) on a domain.

Lagrange Multipliers

- We have previously explored the topics of (a.) local extrema and (b.) global (or absolute) extrema. Each topic revolved around describing a function of several variables by the largest (or smallest) values it takes (a.) on a small open ball around a point P or (b.) on a domain.
- Using the Second Derivative Test, we were able to algorithmically generate data about the local extrema of a function $f(x, y)$.

Lagrange Multipliers

- We have previously explored the topics of (a.) local extrema and (b.) global (or absolute) extrema. Each topic revolved around describing a function of several variables by the largest (or smallest) values it takes (a.) on a small open ball around a point P or (b.) on a domain.
- Using the Second Derivative Test, we were able to algorithmically generate data about the local extrema of a function $f(x, y)$.
- By the Extreme Value Theorem, we distinguished a nice class of functions and domains for which we could systematically describe the absolute extrema:

Lagrange Multipliers

- We have previously explored the topics of (a.) local extrema and (b.) global (or absolute) extrema. Each topic revolved around describing a function of several variables by the largest (or smallest) values it takes (a.) on a small open ball around a point P or (b.) on a domain.
- Using the Second Derivative Test, we were able to algorithmically generate data about the local extrema of a function $f(x, y)$.
- By the Extreme Value Theorem, we distinguished a nice class of functions and domains for which we could systematically describe the absolute extrema: continuous functions on closed, bounded domains achieve absolute extrema at critical or boundary points.

Lagrange Multipliers

- Continuing our study of optimization, our next objective is to optimize a function of several variables subject to a constraint.

Lagrange Multipliers

- Continuing our study of optimization, our next objective is to optimize a function of several variables subject to a constraint.
- Consider enjoying dinner at an Indian buffet with your family.

Lagrange Multipliers

- Continuing our study of optimization, our next objective is to optimize a function of several variables subject to a constraint.
- Consider enjoying dinner at an Indian buffet with your family. Of course, the chicken tikka masala is absolutely delicious, but the naan is amazing, as well, and one can only eat so much.

Lagrange Multipliers

- Continuing our study of optimization, our next objective is to optimize a function of several variables subject to a constraint.
- Consider enjoying dinner at an Indian buffet with your family. Of course, the chicken tikka masala is absolutely delicious, but the naan is amazing, as well, and one can only eat so much.
- Question: Could we use calculus to maximize the utility (satisfaction) we derive from our meal at the buffet given that we can only eat so much chicken tikka masala and naan?

Lagrange Multipliers

- Continuing our study of optimization, our next objective is to optimize a function of several variables subject to a constraint.
- Consider enjoying dinner at an Indian buffet with your family. Of course, the chicken tikka masala is absolutely delicious, but the naan is amazing, as well, and one can only eat so much.
- Question: Could we use calculus to maximize the utility (satisfaction) we derive from our meal at the buffet given that we can only eat so much chicken tikka masala and naan?
- Of course, the answer is yes, and we achieve this optimization via the method of Lagrange multipliers.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$. We want to locate the point P at which $f(x, y)$ is a maximum.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$. We want to locate the point P at which $f(x, y)$ is a maximum. We note that ∇f_{Q} points in the direction of the maximum increase of f, but perhaps we cannot move straight along ∇f_{Q} because we will fall off the constraint curve;

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$. We want to locate the point P at which $f(x, y)$ is a maximum. We note that ∇f_{Q} points in the direction of the maximum increase of f, but perhaps we cannot move straight along ∇f_{Q} because we will fall off the constraint curve; however, if we move along $g(x, y)=k$ in the direction of ∇f_{Q}, we will increase the value of $f(x, y)$.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$. We want to locate the point P at which $f(x, y)$ is a maximum. We note that ∇f_{Q} points in the direction of the maximum increase of f, but perhaps we cannot move straight along ∇f_{Q} because we will fall off the constraint curve; however, if we move along $g(x, y)=k$ in the direction of ∇f_{Q}, we will increase the value of $f(x, y)$. Continuing to move along the constraint curve in the direction of ∇f_{Q} eventually leads to a point P at which ∇f_{P} is orthogonal to $g(x, y)=k$.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$. We want to locate the point P at which $f(x, y)$ is a maximum. We note that ∇f_{Q} points in the direction of the maximum increase of f, but perhaps we cannot move straight along ∇f_{Q} because we will fall off the constraint curve; however, if we move along $g(x, y)=k$ in the direction of ∇f_{Q}, we will increase the value of $f(x, y)$. Continuing to move along the constraint curve in the direction of ∇f_{Q} eventually leads to a point P at which ∇f_{P} is orthogonal to $g(x, y)=k$. Consequently, $f(P)$ is a local maximum on $g(x, y)=k$.

Lagrange Multipliers

- Geometrically, the idea is very intuitive. We will assume that we wish to maximize a function $f(x, y)$ subject to the constraint $g(x, y)=k$.
- Consider walking along the curve $g(x, y)=k$ and stopping at the first point Q where $f(x, y)$ bumps into $g(x, y)=k$. We want to locate the point P at which $f(x, y)$ is a maximum. We note that ∇f_{Q} points in the direction of the maximum increase of f, but perhaps we cannot move straight along ∇f_{Q} because we will fall off the constraint curve; however, if we move along $g(x, y)=k$ in the direction of ∇f_{Q}, we will increase the value of $f(x, y)$. Continuing to move along the constraint curve in the direction of ∇f_{Q} eventually leads to a point P at which ∇f_{P} is orthogonal to $g(x, y)=k$. Consequently, $f(P)$ is a local maximum on $g(x, y)=k$. Considering that ∇g_{P} is orthogonal to the level curve $g(x, y)=k$ at P, we conclude that ∇f_{P} and ∇g_{P} are parallel so that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$.

Lagrange Multipliers

Lagrange Multipliers

Lagrange Multipliers

Given differentiable functions $f(x, y)$ and $g(x, y)$ such that $f(x, y)$ has a local maximum (minimum) on the constraint curve $g(x, y)=k$ at a point $P=(a, b)$ and $\nabla g_{P} \neq(0,0)$, there exists a nonzero scalar λ such that

$$
\nabla f(a, b)=\lambda \cdot \nabla g(a, b)
$$

i.e., $f_{x}(a, b)=\lambda \cdot g_{x}(a, b)$ and $f_{y}(a, b)=\lambda \cdot g_{y}(a, b)$.

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume.

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet,

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet, i.e., our constraint function is given by $v(x, y)=x+y=24$.

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet, i.e., our constraint function is given by $v(x, y)=x+y=24$. By the method of Lagrange multipliers, we maximize our utility at a point P such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$, i.e.,

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet, i.e., our constraint function is given by $v(x, y)=x+y=24$. By the method of Lagrange multipliers, we maximize our utility at a point P such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$, i.e.,
(1) $2 x y+y^{2}=\lambda$;
(2) $2 x y+x^{2}=\lambda$; and
(3) $x+y=24$.

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet, i.e., our constraint function is given by $v(x, y)=x+y=24$. By the method of Lagrange multipliers, we maximize our utility at a point P such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$, i.e.,
(1) $2 x y+y^{2}=\lambda$;
(2) $2 x y+x^{2}=\lambda$; and
(3) $x+y=24$.

By the third equation, we have that $x=24-y$ so that $\lambda=2(24-y) y+y^{2}=48 y-y^{2}$ by the first equation.

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet, i.e., our constraint function is given by $v(x, y)=x+y=24$. By the method of Lagrange multipliers, we maximize our utility at a point P such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$, i.e.,
(1) $2 x y+y^{2}=\lambda$;
(2) $2 x y+x^{2}=\lambda$; and
(3) $x+y=24$.

By the third equation, we have that $x=24-y$ so that $\lambda=2(24-y) y+y^{2}=48 y-y^{2}$ by the first equation. By the second equation, we have that $\lambda=2(24-y) y+(24-y)^{2}=576-y^{2}$.

Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the amount of chicken tikka masala and naan we can consume. Further, let us assume that our utility function is $u(x, y)=x^{2} y+x y^{2}$ and that we can only eat 24 ounces of food at the buffet, i.e., our constraint function is given by $v(x, y)=x+y=24$. By the method of Lagrange multipliers, we maximize our utility at a point P such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$, i.e.,
(1) $2 x y+y^{2}=\lambda$;
(2) $2 x y+x^{2}=\lambda$; and
(3) $x+y=24$.

By the third equation, we have that $x=24-y$ so that $\lambda=2(24-y) y+y^{2}=48 y-y^{2}$ by the first equation. By the second equation, we have that $\lambda=2(24-y) y+(24-y)^{2}=576-y^{2}$. Comparing these equations gives $48 y=576$ so that $y=12=x$.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, the method of Lagrange multipliers will always produce an absolute maximum or an absolute minimum.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, the method of Lagrange multipliers will always produce an absolute maximum or an absolute minimum.
(b.) False.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, the method of Lagrange multipliers will always produce an absolute maximum or an absolute minimum.
(b.) False. Consider the differentiable function $f(x, y)=x$ and the differentiable curve $g(x, y)=x-y=0$.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, the method of Lagrange multipliers will always produce an absolute maximum or an absolute minimum.
(b.) False. Consider the differentiable function $f(x, y)=x$ and the differentiable curve $g(x, y)=x-y=0$. We note that all points on the line $y=x$ lie on the constraint curve;

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, the method of Lagrange multipliers will always produce an absolute maximum or an absolute minimum.
(b.) False. Consider the differentiable function $f(x, y)=x$ and the differentiable curve $g(x, y)=x-y=0$. We note that all points on the line $y=x$ lie on the constraint curve; however, $f(x, y)=x$ can be arbitrarily large or small, hence it has no absolute extrema.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, there exists a point P on the curve $g(x, y)=k$ such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$ for some real number λ.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, there exists a point P on the curve $g(x, y)=k$ such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$ for some real number λ.
(b.) False.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, there exists a point P on the curve $g(x, y)=k$ such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$ for some real number λ.
(b.) False. Consider the differentiable function $f(x, y)=x$ and the differentiable curve $g(x, y)=(x-1)^{3}-y^{2}=0$.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, there exists a point P on the curve $g(x, y)=k$ such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$ for some real number λ.
(b.) False. Consider the differentiable function $f(x, y)=x$ and the differentiable curve $g(x, y)=(x-1)^{3}-y^{2}=0$. We have that $\nabla f=(1,0)$ and $\lambda \cdot \nabla g=\left(3(x-1)^{2},-2 y\right)$ are not equal at any point P on the curve $g(x, y)=0$.

Lagrange Multipliers

True (a.) or False (b.)

Given a differentiable function $f(x, y)$ and a differentiable curve $g(x, y)=k$, there exists a point P on the curve $g(x, y)=k$ such that $\nabla f_{P}=\lambda \cdot \nabla g_{P}$ for some real number λ.
(b.) False. Consider the differentiable function $f(x, y)=x$ and the differentiable curve $g(x, y)=(x-1)^{3}-y^{2}=0$. We have that $\nabla f=(1,0)$ and $\lambda \cdot \nabla g=\left(3(x-1)^{2},-2 y\right)$ are not equal at any point P on the curve $g(x, y)=0$. Explicitly, we must have that $-2 y=0$ so that $y=0$. But this forces $(x-1)^{3}=0$ so that $x=1$ and $3(x-1)^{2}=0$.

