
Lagrange Multipliers

We have previously explored the topics of (a.) local extrema and (b.)
global (or absolute) extrema.

Each topic revolved around describing a
function of several variables by the largest (or smallest) values it takes
(a.) on a small open ball around a point P or (b.) on a domain.

Using the Second Derivative Test, we were able to algorithmically
generate data about the local extrema of a function f (x , y).

By the Extreme Value Theorem, we distinguished a nice class of
functions and domains for which we could systematically describe the
absolute extrema: continuous functions on closed, bounded
domains achieve absolute extrema at critical or boundary points.
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Lagrange Multipliers

Continuing our study of optimization, our next objective is to
optimize a function of several variables subject to a constraint.

Consider enjoying dinner at an Indian buffet with your family. Of
course, the chicken tikka masala is absolutely delicious, but the naan
is amazing, as well, and one can only eat so much.

Question: Could we use calculus to maximize the utility
(satisfaction) we derive from our meal at the buffet given that we can
only eat so much chicken tikka masala and naan?

Of course, the answer is yes, and we achieve this optimization via the
method of Lagrange multipliers.
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Lagrange Multipliers

Geometrically, the idea is very intuitive. We will assume that we wish
to maximize a function f (x , y) subject to the constraint g(x , y) = k .

Consider walking along the curve g(x , y) = k and stopping at the
first point Q where f (x , y) bumps into g(x , y) = k . We want to
locate the point P at which f (x , y) is a maximum. We note that ∇fQ
points in the direction of the maximum increase of f , but perhaps we
cannot move straight along ∇fQ because we will fall off the
constraint curve; however, if we move along g(x , y) = k in the
direction of ∇fQ , we will increase the value of f (x , y). Continuing to
move along the constraint curve in the direction of ∇fQ eventually
leads to a point P at which ∇fP is orthogonal to g(x , y) = k.
Consequently, f (P) is a local maximum on g(x , y) = k . Considering
that ∇gP is orthogonal to the level curve g(x , y) = k at P, we
conclude that ∇fP and ∇gP are parallel so that ∇fP = λ · ∇gP .
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Lagrange Multipliers

Lagrange Multipliers

Given differentiable functions f (x , y) and g(x , y) such that f (x , y) has a
local maximum (minimum) on the constraint curve g(x , y) = k at a point
P = (a, b) and ∇gP 6= (0, 0), there exists a nonzero scalar λ such that

∇f (a, b) = λ · ∇g(a, b),

i.e., fx(a, b) = λ · gx(a, b) and fy (a, b) = λ · gy (a, b).
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Lagrange Multipliers

Back in our buffet example, let us denote by x and y respectively the
amount of chicken tikka masala and naan we can consume.

Further, let us
assume that our utility function is u(x , y) = x2y + xy2 and that we can
only eat 24 ounces of food at the buffet, i.e., our constraint function is
given by v(x , y) = x + y = 24. By the method of Lagrange multipliers, we
maximize our utility at a point P such that ∇fP = λ · ∇gP , i.e.,

1 2xy + y2 = λ;

2 2xy + x2 = λ; and

3 x + y = 24.

By the third equation, we have that x = 24− y so that
λ = 2(24− y)y + y2 = 48y − y2 by the first equation. By the second
equation, we have that λ = 2(24− y)y + (24− y)2 = 576− y2.
Comparing these equations gives 48y = 576 so that y = 12 = x .
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Lagrange Multipliers

True (a.) or False (b.)
Given a differentiable function f (x , y) and a differentiable curve
g(x , y) = k , the method of Lagrange multipliers will always
produce an absolute maximum or an absolute minimum.

(b.) False. Consider the differentiable function f (x , y) = x and the
differentiable curve g(x , y) = x − y = 0. We note that all points on the
line y = x lie on the constraint curve; however, f (x , y) = x can be
arbitrarily large or small, hence it has no absolute extrema.
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Lagrange Multipliers

True (a.) or False (b.)
Given a differentiable function f (x , y) and a differentiable curve
g(x , y) = k , there exists a point P on the curve g(x , y) = k such
that ∇fP = λ · ∇gP for some real number λ.

(b.) False. Consider the differentiable function f (x , y) = x and the
differentiable curve g(x , y) = (x − 1)3 − y2 = 0. We have that
∇f = (1, 0) and λ · ∇g = (3(x − 1)2,−2y) are not equal at any point P
on the curve g(x , y) = 0. Explicitly, we must have that −2y = 0 so that
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