
Local Extrema

We say that a function f (x , y) has a local maximum at a point
(a, b) whenever f (x , y) ≤ f (a, b) for all (x , y) near (a, b).

We say that a function f (x , y) has a local minimum at a point (a, b)
whenever f (x , y) ≥ f (a, b) for all (x , y) near (a, b).

We can make the notion of “(x , y) near (a, b)” precise, but
essentially, a local maximum (minimum) is the largest (smallest)
value a function takes in some region containing the point (a, b).
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Local Extrema

Back in Calculus I, we could detect the local extrema of a function
f (x) by checking the critical points of f (x) against some test, i.e., by
finding the values of x such that f ′(x) = 0 or f ′(x) does not exist.

1 Given that f ′(x) = 0, the tangent line of f (x) is horizontal.

2 Given that f ′(x) does not exist, the graph of f (x) has a corner / cusp.

Quite importantly, a critical point does not guarantee a local
maximum (minimum). Consider the function f (x) = x3. Evidently, we
have that f ′(x) = 3x2 has a critical point at x = 0; however, in a
neighborhood of 0, the function takes positive and negative values.

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 2 / 27



Local Extrema

Back in Calculus I, we could detect the local extrema of a function
f (x) by checking the critical points of f (x) against some test, i.e., by
finding the values of x such that f ′(x) = 0 or f ′(x) does not exist.

1 Given that f ′(x) = 0, the tangent line of f (x) is horizontal.

2 Given that f ′(x) does not exist, the graph of f (x) has a corner / cusp.

Quite importantly, a critical point does not guarantee a local
maximum (minimum). Consider the function f (x) = x3. Evidently, we
have that f ′(x) = 3x2 has a critical point at x = 0; however, in a
neighborhood of 0, the function takes positive and negative values.

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 2 / 27



Local Extrema

Back in Calculus I, we could detect the local extrema of a function
f (x) by checking the critical points of f (x) against some test, i.e., by
finding the values of x such that f ′(x) = 0 or f ′(x) does not exist.

1 Given that f ′(x) = 0, the tangent line of f (x) is horizontal.

2 Given that f ′(x) does not exist, the graph of f (x) has a corner / cusp.

Quite importantly, a critical point does not guarantee a local
maximum (minimum). Consider the function f (x) = x3. Evidently, we
have that f ′(x) = 3x2 has a critical point at x = 0; however, in a
neighborhood of 0, the function takes positive and negative values.

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 2 / 27



Local Extrema

Back in Calculus I, we could detect the local extrema of a function
f (x) by checking the critical points of f (x) against some test, i.e., by
finding the values of x such that f ′(x) = 0 or f ′(x) does not exist.

1 Given that f ′(x) = 0, the tangent line of f (x) is horizontal.

2 Given that f ′(x) does not exist, the graph of f (x) has a corner / cusp.

Quite importantly, a critical point does not guarantee a local
maximum (minimum).

Consider the function f (x) = x3. Evidently, we
have that f ′(x) = 3x2 has a critical point at x = 0; however, in a
neighborhood of 0, the function takes positive and negative values.

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 2 / 27



Local Extrema

Back in Calculus I, we could detect the local extrema of a function
f (x) by checking the critical points of f (x) against some test, i.e., by
finding the values of x such that f ′(x) = 0 or f ′(x) does not exist.

1 Given that f ′(x) = 0, the tangent line of f (x) is horizontal.

2 Given that f ′(x) does not exist, the graph of f (x) has a corner / cusp.

Quite importantly, a critical point does not guarantee a local
maximum (minimum). Consider the function f (x) = x3.

Evidently, we
have that f ′(x) = 3x2 has a critical point at x = 0; however, in a
neighborhood of 0, the function takes positive and negative values.

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 2 / 27



Local Extrema

Back in Calculus I, we could detect the local extrema of a function
f (x) by checking the critical points of f (x) against some test, i.e., by
finding the values of x such that f ′(x) = 0 or f ′(x) does not exist.

1 Given that f ′(x) = 0, the tangent line of f (x) is horizontal.

2 Given that f ′(x) does not exist, the graph of f (x) has a corner / cusp.

Quite importantly, a critical point does not guarantee a local
maximum (minimum). Consider the function f (x) = x3. Evidently, we
have that f ′(x) = 3x2 has a critical point at x = 0; however, in a
neighborhood of 0, the function takes positive and negative values.

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 2 / 27



Local Extrema

We say that a point P = (a, b) is a critical point of a function
f (x , y) whenever we have that ∇f (P) = (fx(P), fy (P)) = (0, 0) or
either of the first-order partial derivatives do not exist at P.

Once again, a critical point does not guarantee a local maximum
(minimum). Consider the function f (x , y) = y2 − x2. We have that
fx = −2x and fy = 2y so that P = (0, 0) is the only critical point.
But the graph of f (x , y) is a hyperbolic paraboloid, hence in a
neighborhood of (0, 0), this function takes positive and negative
values. Because of this example, we refer to a critical point P of
f (x , y) that is not a local extremum as a saddle point.
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Local Extrema

We have just seen that critical points do not guarantee local extrema;
however, the converse of this statement is true.
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Local Extrema

Fermat’s Theorem

Given that f (x , y) has a local maximum (minimum) at a point P = (a, b),
it is guaranteed that P is a critical point of f (x , y).

Put another way, if P = (a, b) is not a critical point of f (x , y), then
f (x , y) cannot have either a local maximum or a local minimum at P.
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Local Extrema

True (a.) or False (b.)

f (x , y) = x2 + y3 − 3y2 − 9y has a critical point at (0,−1).

(a.) True. We have that

fx = 2x and

fy = 3y2 − 6y − 9 = 3(y2 − 2y − 3) = 3(y + 1)(y − 3).

Consequently, the critical points are (0, 3) and (0,−1).
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Local Extrema

True (a.) or False (b.)
f (x , y) = |x |+ |y | has no critical points.

(b.) False. We have that fx = x
|x | and fy = y

|y | . Evidently, these do not

exist at the origin, hence the only critical point is (0, 0).

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 7 / 27



Local Extrema

True (a.) or False (b.)
f (x , y) = |x |+ |y | has no critical points.

(b.) False.

We have that fx = x
|x | and fy = y

|y | . Evidently, these do not

exist at the origin, hence the only critical point is (0, 0).

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 7 / 27



Local Extrema

True (a.) or False (b.)
f (x , y) = |x |+ |y | has no critical points.

(b.) False. We have that fx = x
|x | and fy = y

|y | . Evidently, these do not

exist at the origin, hence the only critical point is (0, 0).

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 7 / 27



The Second Derivative Test

We have thus far discussed how to compute the critical points of a
function f (x , y). Our next step is to systematically describe how to
determine whether a critical point is a local extremum.

By analogy, consider the Second Derivative Test on f (x): a critical
point x = a is a local maximum (minimum) if f ′′(a) < 0 (f ′′(a) > 0).
Given that f ′′(a) = 0, however, the test is inconclusive.

Given a function f (x , y), we intuit that there should be some
inequality involving fxx(a, b), fyy (a, b), fxy (a, b), and fyx(a, b) that
determines if P = (a, b) is a local extremum.
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The Second Derivative Test

We define the Hessian matrix of a function f (x1, . . . , xn) as the
matrix whose ijth entry is the second-order partial derivative fxixj .

Given the function f (x , y), for example, the Hessian matrix is

H =

(
fxx fxy
fyx fyy

)
.

We define the discriminant D(x , y) of the function f (x , y) to be the
determinant of the Hessian matrix of f (x , y), i.e.,

|H| = D(x , y) = fxx(x , y)fyy (x , y)− fxy (x , y)fyx(x , y).

Often, we deal with functions that satisfy Clairaut’s Theorem, hence
the discriminant can be written as

D(x , y) = fxx(x , y)fyy (x , y)− f 2xy (x , y).
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The Second Derivative Test

Second Derivative Test

Consider a function f (x , y) with a critical point P = (a, b) such that the
second-order partials fxx , fyy , fxy , and fyx exist and are continuous near P.

1 Given that D(a, b) > 0 and fxx(a, b) > 0, f (a, b) is a local minimum.

2 Given that D(a, b) > 0 and fxx(a, b) < 0, f (a, b) is a local maximum.

3 Given that D(a, b) < 0, P is a saddle point of f (x , y).

4 Given that D(a, b) = 0, the test is inconclusive.

Given that D(a, b) > 0, fxx(a, b)fyy (a, b) > 0 so that fxx(a, b) and fyy (a, b)
have the same sign. Consequently, the test can be run with fyy (a, b).
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The Second Derivative Test

Using the Second Derivative Test
Give a description of the critical points of f (x , y) = x3− 12xy + y3.

We have that fx = 3x2 − 12y and fy = 3y2 − 12x so that the critical
points occur when x2 = 4y and x = 1

4y
2. By squaring x in the second

equation and plugging in x2 = 4y , we find that 4y = 1
16y

4 so that
y
(

1
16y

3 − 4) = 0. Consequently, we have that y = 0 or y3 = 64 so that
our critical points are (0, 0) when y = 0 and (4, 4) when y = 4.
Computing the second-order partials gives fxx = 6x , fyy = 6y , and
fxy = −12 = fyx . We have the two discriminants for each point

D(0, 0) = fxx(0, 0)fyy (0, 0)− f 2xy (0, 0) = 0 · 0− (−12)2 = −144 < 0 and

D(4, 4) = fxx(4, 4)fyy (4, 4)− f 2xy (4, 4) = (24)2 − (−12)2 > 0.

We conclude that (0, 0) is a saddle point and (4, 4) is a local minimum.
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We conclude that (0, 0) is a saddle point and (4, 4) is a local minimum.
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The Second Derivative Test

Using the Second Derivative Test
Give a description of the critical points of f (x , y) = 3xy2 − x3.

We have that fx = 3y2 − 3x2 and fy = 6xy so that the only critical point
occurs at the origin (0, 0). Computing the second-order partials gives
fxx = −6x , fyy = 6x , and fxy = 6y = fyx . We have the discriminant

D(0, 0) = fxx(0, 0)fyy (0, 0)− f 2xy (0, 0) = 0 · 0− (0)2 = 0.

Consequently, the Second Derivative Test fails. Considering that
f (x , 0) = −x3 takes on both positive and negative values in a
neighborhood of (0, 0), we conclude that (0, 0) is a saddle point.
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Global Extrema

Often, we are interested in examining the behavior of a function on
its entire domain or subject to some boundary conditions.

We refer to the maximum (minimum) value that a function takes on
its domain as a global or absolute maximum (minimum).

Recall from Calculus I that a quadratic function f (x) = a(x − h)2 + k
with a > 0 achieves its absolute minimum at its vertex (h, k);
however, f (x) has no absolute maximum over the real line R.

We can say even more about a function f (x) and its absolute extrema.
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Global Extrema

Extreme Value Theorem

Every continuous function f (x) on a closed and bounded interval [a, b]
achieves its absolute maximum and its absolute minimum on [a, b].
Further, these extreme values occur either at the critical points f ′(x) = 0
of f (x) or at the end points of the interval [a, b].
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Global Extrema

Consider the plane f (x , y) = x + y .

We note that the xz-trace of this
plane is a line g(x) = x + C , and the yz-trace of this plane is a line
h(y) = y + C , hence if we restrict f (x , y) to the square region
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, both g(x) and h(y) are maximized at
(1, 1), and we conclude that f (x , y) is maximized at (1, 1). Of course,
planes do not have global extrema, hence there is no absolute
maximum or absolute minimum of f (x , y) on the Cartesian plane R2.

Our aim is therefore to characterize when a function of several
variables exhibits any global extrema.
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Topology in Rn

We say that a region R in Rn is bounded if every point in R is
contained in a ball of radius M > 0 centered at the origin.

We say that a point P in Rn is an interior point of R if the region R
contains an open ball of radius r > 0 centered at P. We refer to the
collection of interior points of R as the interior R◦ of R.

We say that a point P in Rn is a boundary point of R if every open
ball of radius r > 0 centered at P contains some points that are
inside of R and some points that are outside of R. We refer to the
collection of boundary points of R as the boundary ∂R of R.
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Topology in Rn

We say that a region R in Rn is open if every point of R is an
interior point,

e.g., the unit open interval (−1, 1) is an open region in
R. Generally, open sets are defined by strict inequalities.

We say that a region R in Rn is closed if R contains all of its
boundary points, e.g., the unit disk x2 + y2 ≤ 1 is a closed region in
R2. Generally, closed sets are defined by “equals to” inequalities.

Complements of open sets are closed, i.e., closed sets patch holes left
when open sets are cut out. Complements of closed sets are open,
i.e., open sets patch holes left when closed sets are cut out.
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Topology in Rn

True (a.) or False (b.)

R = {(x , y) | x2 + y2 < 4} is a closed region in R2.

(b.) False. Geometrically, this is an open disk of radius 2.
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Topology in Rn

True (a.) or False (b.)

R = {(x , y) | x2 + y2 = 4} is a closed region in R2.

(a.) True. Geometrically, this is a circle of radius 2.
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Topology in Rn

True (a.) or False (b.)

R = {(x , y) | x2 + y2 > 4} is a closed region in R2.

(b.) False. Geometrically, this is the Cartesian plane with a closed disk of
radius 2 cut out. Complements of closed sets are open.
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Extreme Value Theorem

Understanding the properties of closed sets and recognizing them in
practice is extremely useful in combination with the following fact.
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Extreme Value Theorem

Extreme Value Theorem II

Every continuous function f (x , y) on a closed and bounded region R in R2

achieves its absolute maximum and its absolute minimum on R. Further,
these extreme values occur either at the critical points (fx , fy ) = (0, 0) of
f (x , y) in the interior R◦ of R or on the boundary ∂R of R.
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Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = 2x − 3xy + y on the unit
square S = {(x , y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We have that fx = 2− 3y and fy = 1− 3x so that the only critical point
occurs at (13 ,

2
3). Computing the second-order partials gives fxx = 0,

fyy = 0, and fxy = −3 = fyx . We have the discriminant

D

(
1

3
,

2

3

)
= fxx

(
1

3
,

2

3

)
fyy

(
1

3
,

2

3

)
− f 2xy

(
1

3
,

2

3

)
= 0 · 0− (−3)2 < 0.

Consequently, we have that (13 ,
2
3) is a saddle point. Our global extrema

must therefore occur on the boundary ∂S. (Continued on the next slide.)

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 23 / 27



Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = 2x − 3xy + y on the unit
square S = {(x , y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We have that fx = 2− 3y and fy = 1− 3x so that the only critical point
occurs at (13 ,

2
3).

Computing the second-order partials gives fxx = 0,
fyy = 0, and fxy = −3 = fyx . We have the discriminant

D

(
1

3
,

2

3

)
= fxx

(
1

3
,

2

3

)
fyy

(
1

3
,

2

3

)
− f 2xy

(
1

3
,

2

3

)
= 0 · 0− (−3)2 < 0.

Consequently, we have that (13 ,
2
3) is a saddle point. Our global extrema

must therefore occur on the boundary ∂S. (Continued on the next slide.)

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 23 / 27



Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = 2x − 3xy + y on the unit
square S = {(x , y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We have that fx = 2− 3y and fy = 1− 3x so that the only critical point
occurs at (13 ,

2
3). Computing the second-order partials gives fxx = 0,

fyy = 0, and fxy = −3 = fyx .

We have the discriminant

D

(
1

3
,

2

3

)
= fxx

(
1

3
,

2

3

)
fyy

(
1

3
,

2

3

)
− f 2xy

(
1

3
,

2

3

)
= 0 · 0− (−3)2 < 0.

Consequently, we have that (13 ,
2
3) is a saddle point. Our global extrema

must therefore occur on the boundary ∂S. (Continued on the next slide.)

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 23 / 27



Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = 2x − 3xy + y on the unit
square S = {(x , y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We have that fx = 2− 3y and fy = 1− 3x so that the only critical point
occurs at (13 ,

2
3). Computing the second-order partials gives fxx = 0,

fyy = 0, and fxy = −3 = fyx . We have the discriminant

D

(
1

3
,

2

3

)
= fxx

(
1

3
,

2

3

)
fyy

(
1

3
,

2

3

)
− f 2xy

(
1

3
,

2

3

)
= 0 · 0− (−3)2 < 0.

Consequently, we have that (13 ,
2
3) is a saddle point.

Our global extrema
must therefore occur on the boundary ∂S. (Continued on the next slide.)

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 23 / 27



Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = 2x − 3xy + y on the unit
square S = {(x , y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We have that fx = 2− 3y and fy = 1− 3x so that the only critical point
occurs at (13 ,

2
3). Computing the second-order partials gives fxx = 0,

fyy = 0, and fxy = −3 = fyx . We have the discriminant

D

(
1

3
,

2

3

)
= fxx

(
1

3
,

2

3

)
fyy

(
1

3
,

2

3

)
− f 2xy

(
1

3
,

2

3

)
= 0 · 0− (−3)2 < 0.

Consequently, we have that (13 ,
2
3) is a saddle point. Our global extrema

must therefore occur on the boundary ∂S. (Continued on the next slide.)

MATH 127 (Section 14.7) Optimization in Several Variables The University of Kansas 23 / 27



Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = 2x − 3xy + y on the unit
square S = {(x , y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

We can systematically check the extreme values of f on the boundary ∂S
by considering each edge of the square separately.

edge function maximum minimum

y = 0 2x 2 0

y = 1 1− x 1 0

x = 0 y 1 0

x = 1 2− 2y 2 0

We conclude that f (x , y) has an absolute maximum of 2 at (1, 0) and an
absolute minimum of 0 at both (0, 0) and (1, 1).
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Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = xy on the unit disk
D1 = {(x , y) | x2 + y2 ≤ 1}.

We have that fx = y and fy = x so that the only critical point occurs at
the origin (0, 0). Computing the second-order partials gives fxx = 0,
fyy = 0, and fxy = 1 = fyx . We have the discriminant

D(0, 0) = fxx(0, 0)fyy (0, 0)− f 2xy (0, 0) = 0 · 0− (1)2 < 0.

Consequently, we have that (0, 0) is a saddle point. Our global extrema
must therefore occur on the boundary ∂D1. (Continued on the next slide.)
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Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = xy on the unit disk
D1 = {(x , y) | x2 + y2 ≤ 1}.

We can systematically check the extreme values of f on the boundary ∂D1

by considering each arc of the disk separately.

1 On the arc y =
√

1− x2, we have the function f (x) = x
√

1− x2.
Consequently, we have that f ′(x) =

√
1− x2 − x

2
√
1−x2 · (−2x). Our

critical points for f (x) are therefore x = ± 1√
2
. Both of these x-values

correspond to the y -value 1√
2
.

2 On the arc y = −
√

1− x2, one can check that the critical values are
the same as before with y = − 1√

2
.
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Extreme Value Theorem

Using the Extreme Value Theorem
Classify the extreme values of f (x , y) = xy on the unit disk
D1 = {(x , y) | x2 + y2 ≤ 1}.

We had assumed previously that x 6= ±1 so that f (x) was differentiable.

Given that x = ±1, we have that y = 0 so that f (±1, 0) = 0.

Ultimately, we conclude that f (x , y) has an absolute maximum value of 1
2

occurring at both ( 1√
2
, 1√

2
) and (− 1√

2
,− 1√

2
) and an absolute minimum

value of −1
2 occurring at both ( 1√

2
,− 1√

2
) and (− 1√

2
, 1√

2
).
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