Local Extrema

- We say that a function $f(x, y)$ has a local maximum at a point (a, b) whenever $f(x, y) \leq f(a, b)$ for all (x, y) near (a, b).

Local Extrema

- We say that a function $f(x, y)$ has a local maximum at a point (a, b) whenever $f(x, y) \leq f(a, b)$ for all (x, y) near (a, b).
- We say that a function $f(x, y)$ has a local minimum at a point (a, b) whenever $f(x, y) \geq f(a, b)$ for all (x, y) near (a, b).

Local Extrema

- We say that a function $f(x, y)$ has a local maximum at a point (a, b) whenever $f(x, y) \leq f(a, b)$ for all (x, y) near (a, b).
- We say that a function $f(x, y)$ has a local minimum at a point (a, b) whenever $f(x, y) \geq f(a, b)$ for all (x, y) near (a, b).
- We can make the notion of " (x, y) near (a, b) " precise, but essentially, a local maximum (minimum) is the largest (smallest) value a function takes in some region containing the point (a, b).

Local Extrema

- Back in Calculus I, we could detect the local extrema of a function $f(x)$ by checking the critical points of $f(x)$ against some test, i.e., by finding the values of x such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.

Local Extrema

- Back in Calculus I, we could detect the local extrema of a function $f(x)$ by checking the critical points of $f(x)$ against some test, i.e., by finding the values of x such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
(1) Given that $f^{\prime}(x)=0$, the tangent line of $f(x)$ is horizontal.

Local Extrema

- Back in Calculus I, we could detect the local extrema of a function $f(x)$ by checking the critical points of $f(x)$ against some test, i.e., by finding the values of x such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
(1) Given that $f^{\prime}(x)=0$, the tangent line of $f(x)$ is horizontal.
(2) Given that $f^{\prime}(x)$ does not exist, the graph of $f(x)$ has a corner / cusp.

Local Extrema

- Back in Calculus I, we could detect the local extrema of a function $f(x)$ by checking the critical points of $f(x)$ against some test, i.e., by finding the values of x such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
(1) Given that $f^{\prime}(x)=0$, the tangent line of $f(x)$ is horizontal.
(2) Given that $f^{\prime}(x)$ does not exist, the graph of $f(x)$ has a corner / cusp.
- Quite importantly, a critical point does not guarantee a local maximum (minimum).

Local Extrema

- Back in Calculus I, we could detect the local extrema of a function $f(x)$ by checking the critical points of $f(x)$ against some test, i.e., by finding the values of x such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
(1) Given that $f^{\prime}(x)=0$, the tangent line of $f(x)$ is horizontal.
(2) Given that $f^{\prime}(x)$ does not exist, the graph of $f(x)$ has a corner / cusp.
- Quite importantly, a critical point does not guarantee a local maximum (minimum). Consider the function $f(x)=x^{3}$.

Local Extrema

- Back in Calculus I, we could detect the local extrema of a function $f(x)$ by checking the critical points of $f(x)$ against some test, i.e., by finding the values of x such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
(1) Given that $f^{\prime}(x)=0$, the tangent line of $f(x)$ is horizontal.
(2) Given that $f^{\prime}(x)$ does not exist, the graph of $f(x)$ has a corner / cusp.
- Quite importantly, a critical point does not guarantee a local maximum (minimum). Consider the function $f(x)=x^{3}$. Evidently, we have that $f^{\prime}(x)=3 x^{2}$ has a critical point at $x=0$; however, in a neighborhood of 0 , the function takes positive and negative values.

Local Extrema

- We say that a point $P=(a, b)$ is a critical point of a function $f(x, y)$ whenever we have that $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)=(0,0)$ or either of the first-order partial derivatives do not exist at P.

Local Extrema

- We say that a point $P=(a, b)$ is a critical point of a function $f(x, y)$ whenever we have that $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)=(0,0)$ or either of the first-order partial derivatives do not exist at P.
- Once again, a critical point does not guarantee a local maximum (minimum).

Local Extrema

- We say that a point $P=(a, b)$ is a critical point of a function $f(x, y)$ whenever we have that $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)=(0,0)$ or either of the first-order partial derivatives do not exist at P.
- Once again, a critical point does not guarantee a local maximum (minimum). Consider the function $f(x, y)=y^{2}-x^{2}$.

Local Extrema

- We say that a point $P=(a, b)$ is a critical point of a function $f(x, y)$ whenever we have that $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)=(0,0)$ or either of the first-order partial derivatives do not exist at P.
- Once again, a critical point does not guarantee a local maximum (minimum). Consider the function $f(x, y)=y^{2}-x^{2}$. We have that $f_{x}=-2 x$ and $f_{y}=2 y$ so that $P=(0,0)$ is the only critical point.

Local Extrema

- We say that a point $P=(a, b)$ is a critical point of a function $f(x, y)$ whenever we have that $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)=(0,0)$ or either of the first-order partial derivatives do not exist at P.
- Once again, a critical point does not guarantee a local maximum (minimum). Consider the function $f(x, y)=y^{2}-x^{2}$. We have that $f_{x}=-2 x$ and $f_{y}=2 y$ so that $P=(0,0)$ is the only critical point. But the graph of $f(x, y)$ is a hyperbolic paraboloid, hence in a neighborhood of $(0,0)$, this function takes positive and negative values.

Local Extrema

- We say that a point $P=(a, b)$ is a critical point of a function $f(x, y)$ whenever we have that $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)=(0,0)$ or either of the first-order partial derivatives do not exist at P.
- Once again, a critical point does not guarantee a local maximum (minimum). Consider the function $f(x, y)=y^{2}-x^{2}$. We have that $f_{x}=-2 x$ and $f_{y}=2 y$ so that $P=(0,0)$ is the only critical point. But the graph of $f(x, y)$ is a hyperbolic paraboloid, hence in a neighborhood of $(0,0)$, this function takes positive and negative values. Because of this example, we refer to a critical point P of $f(x, y)$ that is not a local extremum as a saddle point.

Local Extrema

- We have just seen that critical points do not guarantee local extrema; however, the converse of this statement is true.

Local Extrema

Fermat's Theorem

Given that $f(x, y)$ has a local maximum (minimum) at a point $P=(a, b)$, it is guaranteed that P is a critical point of $f(x, y)$.

Local Extrema

Fermat's Theorem

Given that $f(x, y)$ has a local maximum (minimum) at a point $P=(a, b)$, it is guaranteed that P is a critical point of $f(x, y)$.

Put another way, if $P=(a, b)$ is not a critical point of $f(x, y)$, then $f(x, y)$ cannot have either a local maximum or a local minimum at P.

Local Extrema

True (a.) or False (b.)
 $f(x, y)=x^{2}+y^{3}-3 y^{2}-9 y$ has a critical point at $(0,-1)$.

Local Extrema

True (a.) or False (b.)
 $f(x, y)=x^{2}+y^{3}-3 y^{2}-9 y$ has a critical point at $(0,-1)$.

(a.) True.

Local Extrema

True (a.) or False (b.)

$f(x, y)=x^{2}+y^{3}-3 y^{2}-9 y$ has a critical point at $(0,-1)$.
(a.) True. We have that

$$
\begin{aligned}
& f_{x}=2 x \\
& f_{y}=3 y^{2}-6 y-9=3\left(y^{2}-2 y-3\right)=3(y+1)(y-3) . \quad \text { and }
\end{aligned}
$$

Local Extrema

True (a.) or False (b.)
 $f(x, y)=x^{2}+y^{3}-3 y^{2}-9 y$ has a critical point at $(0,-1)$.

(a.) True. We have that

$$
\begin{aligned}
& f_{x}=2 x \\
& f_{y}=3 y^{2}-6 y-9=3\left(y^{2}-2 y-3\right)=3(y+1)(y-3) . \quad \text { and }
\end{aligned}
$$

Consequently, the critical points are $(0,3)$ and $(0,-1)$.

Local Extrema

True (a.) or False (b.)
 $f(x, y)=|x|+|y|$ has no critical points.

Local Extrema

True (a.) or False (b.)
 $f(x, y)=|x|+|y|$ has no critical points.

(b.) False.

Local Extrema

True (a.) or False (b.)

$f(x, y)=|x|+|y|$ has no critical points.
(b.) False. We have that $f_{x}=\frac{x}{|x|}$ and $f_{y}=\frac{y}{|y|}$. Evidently, these do not exist at the origin, hence the only critical point is $(0,0)$.

The Second Derivative Test

- We have thus far discussed how to compute the critical points of a function $f(x, y)$. Our next step is to systematically describe how to determine whether a critical point is a local extremum.

The Second Derivative Test

- We have thus far discussed how to compute the critical points of a function $f(x, y)$. Our next step is to systematically describe how to determine whether a critical point is a local extremum.
- By analogy, consider the Second Derivative Test on $f(x)$: a critical point $x=a$ is a local maximum (minimum) if $f^{\prime \prime}(a)<0\left(f^{\prime \prime}(a)>0\right)$.

The Second Derivative Test

- We have thus far discussed how to compute the critical points of a function $f(x, y)$. Our next step is to systematically describe how to determine whether a critical point is a local extremum.
- By analogy, consider the Second Derivative Test on $f(x)$: a critical point $x=a$ is a local maximum (minimum) if $f^{\prime \prime}(a)<0\left(f^{\prime \prime}(a)>0\right)$. Given that $f^{\prime \prime}(a)=0$, however, the test is inconclusive.

The Second Derivative Test

- We have thus far discussed how to compute the critical points of a function $f(x, y)$. Our next step is to systematically describe how to determine whether a critical point is a local extremum.
- By analogy, consider the Second Derivative Test on $f(x)$: a critical point $x=a$ is a local maximum (minimum) if $f^{\prime \prime}(a)<0\left(f^{\prime \prime}(a)>0\right)$. Given that $f^{\prime \prime}(a)=0$, however, the test is inconclusive.
- Given a function $f(x, y)$, we intuit that there should be some inequality involving $f_{x x}(a, b), f_{y y}(a, b), f_{x y}(a, b)$, and $f_{y x}(a, b)$ that determines if $P=(a, b)$ is a local extremum.

The Second Derivative Test

- We define the Hessian matrix of a function $f\left(x_{1}, \ldots, x_{n}\right)$ as the matrix whose $i j$ th entry is the second-order partial derivative $f_{x_{i} x_{j}}$.

The Second Derivative Test

- We define the Hessian matrix of a function $f\left(x_{1}, \ldots, x_{n}\right)$ as the matrix whose $i j$ th entry is the second-order partial derivative $f_{x_{i} x_{j}}$. Given the function $f(x, y)$, for example, the Hessian matrix is

$$
H=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)
$$

The Second Derivative Test

- We define the Hessian matrix of a function $f\left(x_{1}, \ldots, x_{n}\right)$ as the matrix whose ijth entry is the second-order partial derivative $f_{x_{i} x_{j}}$. Given the function $f(x, y)$, for example, the Hessian matrix is

$$
H=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)
$$

- We define the discriminant $D(x, y)$ of the function $f(x, y)$ to be the determinant of the Hessian matrix of $f(x, y)$, i.e.,

$$
|H|=D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y) f_{y x}(x, y)
$$

The Second Derivative Test

- We define the Hessian matrix of a function $f\left(x_{1}, \ldots, x_{n}\right)$ as the matrix whose ijth entry is the second-order partial derivative $f_{x_{i} x_{j}}$. Given the function $f(x, y)$, for example, the Hessian matrix is

$$
H=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)
$$

- We define the discriminant $D(x, y)$ of the function $f(x, y)$ to be the determinant of the Hessian matrix of $f(x, y)$, i.e.,

$$
|H|=D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y) f_{y x}(x, y)
$$

- Often, we deal with functions that satisfy Clairaut's Theorem, hence the discriminant can be written as

$$
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)
$$

The Second Derivative Test

Second Derivative Test

Consider a function $f(x, y)$ with a critical point $P=(a, b)$ such that the second-order partials $f_{x x}, f_{y y}, f_{x y}$, and $f_{y x}$ exist and are continuous near P.
(1) Given that $D(a, b)>0$ and $f_{x x}(a, b)>0, f(a, b)$ is a local minimum.
(2) Given that $D(a, b)>0$ and $f_{x x}(a, b)<0, f(a, b)$ is a local maximum.
(3) Given that $D(a, b)<0, P$ is a saddle point of $f(x, y)$.
(9) Given that $D(a, b)=0$, the test is inconclusive.

The Second Derivative Test

Second Derivative Test

Consider a function $f(x, y)$ with a critical point $P=(a, b)$ such that the second-order partials $f_{x x}, f_{y y}, f_{x y}$, and $f_{y x}$ exist and are continuous near P.
(1) Given that $D(a, b)>0$ and $f_{x x}(a, b)>0, f(a, b)$ is a local minimum.
(2) Given that $D(a, b)>0$ and $f_{x x}(a, b)<0, f(a, b)$ is a local maximum.
(3) Given that $D(a, b)<0, P$ is a saddle point of $f(x, y)$.
(9) Given that $D(a, b)=0$, the test is inconclusive.

Given that $D(a, b)>0, f_{x x}(a, b) f_{y y}(a, b)>0$ so that $f_{x x}(a, b)$ and $f_{y y}(a, b)$ have the same sign. Consequently, the test can be run with $f_{y y}(a, b)$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

We have that $f_{x}=3 x^{2}-12 y$ and $f_{y}=3 y^{2}-12 x$ so that the critical points occur when $x^{2}=4 y$ and $x=\frac{1}{4} y^{2}$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

We have that $f_{x}=3 x^{2}-12 y$ and $f_{y}=3 y^{2}-12 x$ so that the critical points occur when $x^{2}=4 y$ and $x=\frac{1}{4} y^{2}$. By squaring x in the second equation and plugging in $x^{2}=4 y$, we find that $4 y=\frac{1}{16} y^{4}$ so that $y\left(\frac{1}{16} y^{3}-4\right)=0$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

We have that $f_{x}=3 x^{2}-12 y$ and $f_{y}=3 y^{2}-12 x$ so that the critical points occur when $x^{2}=4 y$ and $x=\frac{1}{4} y^{2}$. By squaring x in the second equation and plugging in $x^{2}=4 y$, we find that $4 y=\frac{1}{16} y^{4}$ so that $y\left(\frac{1}{16} y^{3}-4\right)=0$. Consequently, we have that $y=0$ or $y^{3}=64$ so that our critical points are $(0,0)$ when $y=0$ and $(4,4)$ when $y=4$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

We have that $f_{x}=3 x^{2}-12 y$ and $f_{y}=3 y^{2}-12 x$ so that the critical points occur when $x^{2}=4 y$ and $x=\frac{1}{4} y^{2}$. By squaring x in the second equation and plugging in $x^{2}=4 y$, we find that $4 y=\frac{1}{16} y^{4}$ so that $y\left(\frac{1}{16} y^{3}-4\right)=0$. Consequently, we have that $y=0$ or $y^{3}=64$ so that our critical points are $(0,0)$ when $y=0$ and $(4,4)$ when $y=4$. Computing the second-order partials gives $f_{x x}=6 x, f_{y y}=6 y$, and $f_{x y}=-12=f_{y x}$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

We have that $f_{x}=3 x^{2}-12 y$ and $f_{y}=3 y^{2}-12 x$ so that the critical points occur when $x^{2}=4 y$ and $x=\frac{1}{4} y^{2}$. By squaring x in the second equation and plugging in $x^{2}=4 y$, we find that $4 y=\frac{1}{16} y^{4}$ so that $y\left(\frac{1}{16} y^{3}-4\right)=0$. Consequently, we have that $y=0$ or $y^{3}=64$ so that our critical points are $(0,0)$ when $y=0$ and $(4,4)$ when $y=4$. Computing the second-order partials gives $f_{x x}=6 x, f_{y y}=6 y$, and $f_{x y}=-12=f_{y x}$. We have the two discriminants for each point

$$
\begin{aligned}
& D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}^{2}(0,0)=0 \cdot 0-(-12)^{2}=-144<0 \text { and } \\
& D(4,4)=f_{x x}(4,4) f_{y y}(4,4)-f_{x y}^{2}(4,4)=(24)^{2}-(-12)^{2}>0 .
\end{aligned}
$$

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=x^{3}-12 x y+y^{3}$.

We have that $f_{x}=3 x^{2}-12 y$ and $f_{y}=3 y^{2}-12 x$ so that the critical points occur when $x^{2}=4 y$ and $x=\frac{1}{4} y^{2}$. By squaring x in the second equation and plugging in $x^{2}=4 y$, we find that $4 y=\frac{1}{16} y^{4}$ so that $y\left(\frac{1}{16} y^{3}-4\right)=0$. Consequently, we have that $y=0$ or $y^{3}=64$ so that our critical points are $(0,0)$ when $y=0$ and $(4,4)$ when $y=4$. Computing the second-order partials gives $f_{x x}=6 x, f_{y y}=6 y$, and $f_{x y}=-12=f_{y x}$. We have the two discriminants for each point

$$
\begin{aligned}
& D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}^{2}(0,0)=0 \cdot 0-(-12)^{2}=-144<0 \text { and } \\
& D(4,4)=f_{x x}(4,4) f_{y y}(4,4)-f_{x y}^{2}(4,4)=(24)^{2}-(-12)^{2}>0 .
\end{aligned}
$$

We conclude that $(0,0)$ is a saddle point and $(4,4)$ is a local minimum.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=3 x y^{2}-x^{3}$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=3 x y^{2}-x^{3}$.

We have that $f_{x}=3 y^{2}-3 x^{2}$ and $f_{y}=6 x y$ so that the only critical point occurs at the origin $(0,0)$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=3 x y^{2}-x^{3}$.

We have that $f_{x}=3 y^{2}-3 x^{2}$ and $f_{y}=6 x y$ so that the only critical point occurs at the origin $(0,0)$. Computing the second-order partials gives $f_{x x}=-6 x, f_{y y}=6 x$, and $f_{x y}=6 y=f_{y x}$.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=3 x y^{2}-x^{3}$.

We have that $f_{x}=3 y^{2}-3 x^{2}$ and $f_{y}=6 x y$ so that the only critical point occurs at the origin $(0,0)$. Computing the second-order partials gives $f_{x x}=-6 x, f_{y y}=6 x$, and $f_{x y}=6 y=f_{y x}$. We have the discriminant

$$
D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}^{2}(0,0)=0 \cdot 0-(0)^{2}=0 .
$$

Consequently, the Second Derivative Test fails.

The Second Derivative Test

Using the Second Derivative Test

Give a description of the critical points of $f(x, y)=3 x y^{2}-x^{3}$.

We have that $f_{x}=3 y^{2}-3 x^{2}$ and $f_{y}=6 x y$ so that the only critical point occurs at the origin $(0,0)$. Computing the second-order partials gives $f_{x x}=-6 x, f_{y y}=6 x$, and $f_{x y}=6 y=f_{y x}$. We have the discriminant

$$
D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}^{2}(0,0)=0 \cdot 0-(0)^{2}=0 .
$$

Consequently, the Second Derivative Test fails. Considering that $f(x, 0)=-x^{3}$ takes on both positive and negative values in a neighborhood of $(0,0)$, we conclude that $(0,0)$ is a saddle point.

Global Extrema

- Often, we are interested in examining the behavior of a function on its entire domain or subject to some boundary conditions.

Global Extrema

- Often, we are interested in examining the behavior of a function on its entire domain or subject to some boundary conditions.
- We refer to the maximum (minimum) value that a function takes on its domain as a global or absolute maximum (minimum).

Global Extrema

- Often, we are interested in examining the behavior of a function on its entire domain or subject to some boundary conditions.
- We refer to the maximum (minimum) value that a function takes on its domain as a global or absolute maximum (minimum).
- Recall from Calculus I that a quadratic function $f(x)=a(x-h)^{2}+k$ with $a>0$ achieves its absolute minimum at its vertex (h, k); however, $f(x)$ has no absolute maximum over the real line \mathbb{R}.

Global Extrema

- Often, we are interested in examining the behavior of a function on its entire domain or subject to some boundary conditions.
- We refer to the maximum (minimum) value that a function takes on its domain as a global or absolute maximum (minimum).
- Recall from Calculus I that a quadratic function $f(x)=a(x-h)^{2}+k$ with $a>0$ achieves its absolute minimum at its vertex (h, k); however, $f(x)$ has no absolute maximum over the real line \mathbb{R}.
- We can say even more about a function $f(x)$ and its absolute extrema.

Global Extrema

Extreme Value Theorem

Every continuous function $f(x)$ on a closed and bounded interval $[a, b]$ achieves its absolute maximum and its absolute minimum on $[a, b]$. Further, these extreme values occur either at the critical points $f^{\prime}(x)=0$ of $f(x)$ or at the end points of the interval $[a, b]$.

Global Extrema

- Consider the plane $f(x, y)=x+y$.

Global Extrema

- Consider the plane $f(x, y)=x+y$. We note that the $x z$-trace of this plane is a line $g(x)=x+C$, and the $y z$-trace of this plane is a line $h(y)=y+C$, hence if we restrict $f(x, y)$ to the square region $0 \leq x \leq 1$ and $0 \leq y \leq 1$, both $g(x)$ and $h(y)$ are maximized at $(1,1)$, and we conclude that $f(x, y)$ is maximized at $(1,1)$.

Global Extrema

- Consider the plane $f(x, y)=x+y$. We note that the $x z$-trace of this plane is a line $g(x)=x+C$, and the $y z$-trace of this plane is a line $h(y)=y+C$, hence if we restrict $f(x, y)$ to the square region $0 \leq x \leq 1$ and $0 \leq y \leq 1$, both $g(x)$ and $h(y)$ are maximized at $(1,1)$, and we conclude that $f(x, y)$ is maximized at $(1,1)$. Of course, planes do not have global extrema, hence there is no absolute maximum or absolute minimum of $f(x, y)$ on the Cartesian plane \mathbb{R}^{2}.

Global Extrema

- Consider the plane $f(x, y)=x+y$. We note that the $x z$-trace of this plane is a line $g(x)=x+C$, and the $y z$-trace of this plane is a line $h(y)=y+C$, hence if we restrict $f(x, y)$ to the square region $0 \leq x \leq 1$ and $0 \leq y \leq 1$, both $g(x)$ and $h(y)$ are maximized at $(1,1)$, and we conclude that $f(x, y)$ is maximized at $(1,1)$. Of course, planes do not have global extrema, hence there is no absolute maximum or absolute minimum of $f(x, y)$ on the Cartesian plane \mathbb{R}^{2}.
- Our aim is therefore to characterize when a function of several variables exhibits any global extrema.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is bounded if every point in \mathcal{R} is contained in a ball of radius $M>0$ centered at the origin.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is bounded if every point in \mathcal{R} is contained in a ball of radius $M>0$ centered at the origin.
- We say that a point P in \mathbb{R}^{n} is an interior point of \mathcal{R} if the region \mathcal{R} contains an open ball of radius $r>0$ centered at P.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is bounded if every point in \mathcal{R} is contained in a ball of radius $M>0$ centered at the origin.
- We say that a point P in \mathbb{R}^{n} is an interior point of \mathcal{R} if the region \mathcal{R} contains an open ball of radius $r>0$ centered at P. We refer to the collection of interior points of \mathcal{R} as the interior \mathcal{R}° of \mathcal{R}.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is bounded if every point in \mathcal{R} is contained in a ball of radius $M>0$ centered at the origin.
- We say that a point P in \mathbb{R}^{n} is an interior point of \mathcal{R} if the region \mathcal{R} contains an open ball of radius $r>0$ centered at P. We refer to the collection of interior points of \mathcal{R} as the interior \mathcal{R}° of \mathcal{R}.
- We say that a point P in \mathbb{R}^{n} is a boundary point of \mathcal{R} if every open ball of radius $r>0$ centered at P contains some points that are inside of \mathcal{R} and some points that are outside of \mathcal{R}.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is bounded if every point in \mathcal{R} is contained in a ball of radius $M>0$ centered at the origin.
- We say that a point P in \mathbb{R}^{n} is an interior point of \mathcal{R} if the region \mathcal{R} contains an open ball of radius $r>0$ centered at P. We refer to the collection of interior points of \mathcal{R} as the interior \mathcal{R}° of \mathcal{R}.
- We say that a point P in \mathbb{R}^{n} is a boundary point of \mathcal{R} if every open ball of radius $r>0$ centered at P contains some points that are inside of \mathcal{R} and some points that are outside of \mathcal{R}. We refer to the collection of boundary points of \mathcal{R} as the boundary $\partial \mathcal{R}$ of \mathcal{R}.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point,

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}. Generally, open sets are defined by strict inequalities.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}. Generally, open sets are defined by strict inequalities.
- We say that a region \mathcal{R} in \mathbb{R}^{n} is closed if \mathcal{R} contains all of its boundary points,

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}. Generally, open sets are defined by strict inequalities.
- We say that a region \mathcal{R} in \mathbb{R}^{n} is closed if \mathcal{R} contains all of its boundary points, e.g., the unit disk $x^{2}+y^{2} \leq 1$ is a closed region in \mathbb{R}^{2}.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}. Generally, open sets are defined by strict inequalities.
- We say that a region \mathcal{R} in \mathbb{R}^{n} is closed if \mathcal{R} contains all of its boundary points, e.g., the unit disk $x^{2}+y^{2} \leq 1$ is a closed region in \mathbb{R}^{2}. Generally, closed sets are defined by "equals to" inequalities.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}. Generally, open sets are defined by strict inequalities.
- We say that a region \mathcal{R} in \mathbb{R}^{n} is closed if \mathcal{R} contains all of its boundary points, e.g., the unit disk $x^{2}+y^{2} \leq 1$ is a closed region in \mathbb{R}^{2}. Generally, closed sets are defined by "equals to" inequalities.
- Complements of open sets are closed, i.e., closed sets patch holes left when open sets are cut out.

Topology in \mathbb{R}^{n}

- We say that a region \mathcal{R} in \mathbb{R}^{n} is open if every point of \mathcal{R} is an interior point, e.g., the unit open interval $(-1,1)$ is an open region in \mathbb{R}. Generally, open sets are defined by strict inequalities.
- We say that a region \mathcal{R} in \mathbb{R}^{n} is closed if \mathcal{R} contains all of its boundary points, e.g., the unit disk $x^{2}+y^{2} \leq 1$ is a closed region in \mathbb{R}^{2}. Generally, closed sets are defined by "equals to" inequalities.
- Complements of open sets are closed, i.e., closed sets patch holes left when open sets are cut out. Complements of closed sets are open, i.e., open sets patch holes left when closed sets are cut out.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}<4\right\}$ is a closed region in \mathbb{R}^{2}.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}<4\right\}$ is a closed region in \mathbb{R}^{2}.

(b.) False.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}<4\right\}$ is a closed region in \mathbb{R}^{2}.

(b.) False. Geometrically, this is an open disk of radius 2.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$ is a closed region in \mathbb{R}^{2}.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$ is a closed region in \mathbb{R}^{2}.

(a.) True.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$ is a closed region in \mathbb{R}^{2}.

(a.) True. Geometrically, this is a circle of radius 2.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}>4\right\}$ is a closed region in \mathbb{R}^{2}.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}>4\right\}$ is a closed region in \mathbb{R}^{2}.

(b.) False.

Topology in \mathbb{R}^{n}

True (a.) or False (b.)
 $\mathcal{R}=\left\{(x, y) \mid x^{2}+y^{2}>4\right\}$ is a closed region in \mathbb{R}^{2}.

(b.) False. Geometrically, this is the Cartesian plane with a closed disk of radius 2 cut out. Complements of closed sets are open.

Extreme Value Theorem

- Understanding the properties of closed sets and recognizing them in practice is extremely useful in combination with the following fact.

Extreme Value Theorem

Extreme Value Theorem II

Every continuous function $f(x, y)$ on a closed and bounded region \mathcal{R} in \mathbb{R}^{2} achieves its absolute maximum and its absolute minimum on \mathcal{R}. Further, these extreme values occur either at the critical points $\left(f_{x}, f_{y}\right)=(0,0)$ of $f(x, y)$ in the interior \mathcal{R}° of \mathcal{R} or on the boundary $\partial \mathcal{R}$ of \mathcal{R}.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We have that $f_{x}=2-3 y$ and $f_{y}=1-3 x$ so that the only critical point occurs at $\left(\frac{1}{3}, \frac{2}{3}\right)$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We have that $f_{x}=2-3 y$ and $f_{y}=1-3 x$ so that the only critical point occurs at $\left(\frac{1}{3}, \frac{2}{3}\right)$. Computing the second-order partials gives $f_{x x}=0$, $f_{y y}=0$, and $f_{x y}=-3=f_{y x}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We have that $f_{x}=2-3 y$ and $f_{y}=1-3 x$ so that the only critical point occurs at $\left(\frac{1}{3}, \frac{2}{3}\right)$. Computing the second-order partials gives $f_{x x}=0$, $f_{y y}=0$, and $f_{x y}=-3=f_{y x}$. We have the discriminant

$$
D\left(\frac{1}{3}, \frac{2}{3}\right)=f_{x x}\left(\frac{1}{3}, \frac{2}{3}\right) f_{y y}\left(\frac{1}{3}, \frac{2}{3}\right)-f_{x y}^{2}\left(\frac{1}{3}, \frac{2}{3}\right)=0 \cdot 0-(-3)^{2}<0
$$

Consequently, we have that $\left(\frac{1}{3}, \frac{2}{3}\right)$ is a saddle point.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We have that $f_{x}=2-3 y$ and $f_{y}=1-3 x$ so that the only critical point occurs at $\left(\frac{1}{3}, \frac{2}{3}\right)$. Computing the second-order partials gives $f_{x x}=0$, $f_{y y}=0$, and $f_{x y}=-3=f_{y x}$. We have the discriminant

$$
D\left(\frac{1}{3}, \frac{2}{3}\right)=f_{x x}\left(\frac{1}{3}, \frac{2}{3}\right) f_{y y}\left(\frac{1}{3}, \frac{2}{3}\right)-f_{x y}^{2}\left(\frac{1}{3}, \frac{2}{3}\right)=0 \cdot 0-(-3)^{2}<0 .
$$

Consequently, we have that $\left(\frac{1}{3}, \frac{2}{3}\right)$ is a saddle point. Our global extrema must therefore occur on the boundary $\partial \mathcal{S}$. (Continued on the next slide.)

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{S}$ by considering each edge of the square separately.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{S}$ by considering each edge of the square separately.

edge	function	maximum	minimum
$y=0$	$2 x$	2	0
$y=1$	$1-x$	1	0
$x=0$	y	1	0
$x=1$	$2-2 y$	2	0

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=2 x-3 x y+y$ on the unit square $\mathcal{S}=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{S}$ by considering each edge of the square separately.

edge	function	maximum	minimum
$y=0$	$2 x$	2	0
$y=1$	$1-x$	1	0
$x=0$	y	1	0
$x=1$	$2-2 y$	2	0

We conclude that $f(x, y)$ has an absolute maximum of 2 at $(1,0)$ and an absolute minimum of 0 at both $(0,0)$ and $(1,1)$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We have that $f_{x}=y$ and $f_{y}=x$ so that the only critical point occurs at the origin $(0,0)$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We have that $f_{x}=y$ and $f_{y}=x$ so that the only critical point occurs at the origin $(0,0)$. Computing the second-order partials gives $f_{x x}=0$, $f_{y y}=0$, and $f_{x y}=1=f_{y x}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We have that $f_{x}=y$ and $f_{y}=x$ so that the only critical point occurs at the origin $(0,0)$. Computing the second-order partials gives $f_{x x}=0$, $f_{y y}=0$, and $f_{x y}=1=f_{y x}$. We have the discriminant

$$
D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}^{2}(0,0)=0 \cdot 0-(1)^{2}<0
$$

Consequently, we have that $(0,0)$ is a saddle point.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We have that $f_{x}=y$ and $f_{y}=x$ so that the only critical point occurs at the origin $(0,0)$. Computing the second-order partials gives $f_{x x}=0$, $f_{y y}=0$, and $f_{x y}=1=f_{y x}$. We have the discriminant

$$
D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}^{2}(0,0)=0 \cdot 0-(1)^{2}<0
$$

Consequently, we have that $(0,0)$ is a saddle point. Our global extrema must therefore occur on the boundary $\partial \mathcal{D}^{1}$. (Continued on the next slide.)

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{D}^{1}$ by considering each arc of the disk separately.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{D}^{1}$ by considering each arc of the disk separately.
(1) On the arc $y=\sqrt{1-x^{2}}$, we have the function $f(x)=x \sqrt{1-x^{2}}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{D}^{1}$ by considering each arc of the disk separately.
(1) On the arc $y=\sqrt{1-x^{2}}$, we have the function $f(x)=x \sqrt{1-x^{2}}$. Consequently, we have that $f^{\prime}(x)=\sqrt{1-x^{2}}-\frac{x}{2 \sqrt{1-x^{2}}} \cdot(-2 x)$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{D}^{1}$ by considering each arc of the disk separately.
(1) On the arc $y=\sqrt{1-x^{2}}$, we have the function $f(x)=x \sqrt{1-x^{2}}$. Consequently, we have that $f^{\prime}(x)=\sqrt{1-x^{2}}-\frac{x}{2 \sqrt{1-x^{2}}} \cdot(-2 x)$. Our critical points for $f(x)$ are therefore $x= \pm \frac{1}{\sqrt{2}}$. Both of these x-values correspond to the y-value $\frac{1}{\sqrt{2}}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We can systematically check the extreme values of f on the boundary $\partial \mathcal{D}^{1}$ by considering each arc of the disk separately.
(1) On the arc $y=\sqrt{1-x^{2}}$, we have the function $f(x)=x \sqrt{1-x^{2}}$. Consequently, we have that $f^{\prime}(x)=\sqrt{1-x^{2}}-\frac{x}{2 \sqrt{1-x^{2}}} \cdot(-2 x)$. Our critical points for $f(x)$ are therefore $x= \pm \frac{1}{\sqrt{2}}$. Both of these x-values correspond to the y-value $\frac{1}{\sqrt{2}}$.
(2) On the arc $y=-\sqrt{1-x^{2}}$, one can check that the critical values are the same as before with $y=-\frac{1}{\sqrt{2}}$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We had assumed previously that $x \neq \pm 1$ so that $f(x)$ was differentiable.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We had assumed previously that $x \neq \pm 1$ so that $f(x)$ was differentiable. Given that $x= \pm 1$, we have that $y=0$ so that $f(\pm 1,0)=0$.

Extreme Value Theorem

Using the Extreme Value Theorem

Classify the extreme values of $f(x, y)=x y$ on the unit disk $\mathcal{D}^{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

We had assumed previously that $x \neq \pm 1$ so that $f(x)$ was differentiable. Given that $x= \pm 1$, we have that $y=0$ so that $f(\pm 1,0)=0$.

Ultimately, we conclude that $f(x, y)$ has an absolute maximum value of $\frac{1}{2}$ occurring at both $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and an absolute minimum value of $-\frac{1}{2}$ occurring at both $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

