
The Chain Rule

Back in Calculus I, we used the Chain Rule to compute derivatives of
composite functions.

Explicitly, the Chain Rule says that

d

dx
g(f (x)) = g ′(f (x))f ′(x).

Primarily, the Chain Rule allows us to compute derivatives of
functions that implicitly depend upon a variable t — often time.
Essentially, if x = f (t) is a differentiable function of time, then
g(x) = g(f (t)) is a differentiable function of time such that

d

dt
g(x) =

d

dt
g(f (t)) = g ′(f (t)) · f ′(t) = g ′(x) · f ′(t) =

dg

dx

dx

dt
.
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The Chain Rule

Of course, we can generalize this idea to functions of several
variables, each of which depends implicitly on another variable t.

Explicitly, given differentiable functions x = g(t) and y = h(t),
z = f (x , y) = f (x(t), y(t)) is a differentiable function of t with

∂z

∂t
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

We note that this formula is specific neither to the number of
variables x1, . . . , xn upon which the function f depends nor the
number of implicit variables t1, . . . , tk upon which those xi variables
depend. Ultimately, the recipe is always given by

∂f

∂tj
=

n∑
i=1

∂f

∂xi

∂xi
∂tj

=
∂f

∂x1

∂x1
∂tj

+ · · ·+ ∂f

∂xn

∂xn
∂tj

.
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The Chain Rule

Consider the function f (x , y). We can take the partial derivatives of f
in terms of polar coordinates (r , θ) since x = r cos θ and y = r sin θ
are both differentiable functions of r and θ.

Explicitly, we compute

∂x

∂r
= cos θ,

∂x

∂θ
= −r sin θ,

∂y

∂r
= sin θ,

∂y

∂θ
= r cos θ,

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= fx cos θ + fy sin θ =

xfx + yfy√
x2 + y2

and

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= −r sin θfx + r cos θfy = −yfx + xfy .
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The Chain Rule

Computing derivatives of multivariable functions by the Chain Rule
can be reduced to a relatively simple algorithm. For simplicity, we will
demonstrate the algorithm on f (x , y) = f (x(s, t), y(s, t)).

1 Compute the partials of f with respect to x and y .

2 Compute the partials of x and y with respect to s.

3 By the Chain Rule, we have that
∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
.

4 Compute the partials of x and y with respect to t.

5 By the Chain Rule, we have that
∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
.
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The Chain Rule

Given that x(s, t) = t2, y(s, t) = st, and z(s, t) = t − s, let us use
the Chain Rule to compute ∂f

∂t of f (x , y , z) = exyz .

1 Compute the partials of f with respect to x , y , and z .

∂f

∂x
= yzexyz ,

∂f

∂y
= xzexyz ,

∂f

∂z
= xyexyz

2 Compute the partials of x , y , and z with respect to t.

∂x

∂t
= 2t,

∂y

∂t
= s,

∂z

∂t
= 1

3 By the Chain Rule, we have that
∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
.

∂f

∂t
= et

3s(t−s)[(st)(t − s)(2t) + (t2)(t − s)(s) + (t2)(st)(1)]
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The Chain Rule

Given differentiable functions x = h(s, t), y = k(s, t), w = f (x , y),
and z = g(x , y), use the table to compute the given derivatives.

∂w

∂x
= 2

∂z

∂x
= 3

∂x

∂s
= −1

∂x

∂t
= 1

∂w

∂y
= −3

∂z

∂y
= 2

∂y

∂s
= −2

∂y

∂t
= −1
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The Chain Rule

1 Compute the value of ∂
∂s (w − z) whenever w = 10 and z = −7.

∂

∂s
(w − z) =

∂w

∂s
− ∂z

∂s

=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
− ∂z

∂x

∂x

∂s
− ∂z

∂y

∂y

∂s

= (2)(−1) + (−3)(−2)− (3)(−1)− (2)(−2)

= −2 + 6 + 3 + 4 = 11
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The Chain Rule

2 Compute the value of ∂
∂t

(
tan z
w

)
whenever w = 1 and z = π

3 .

∂

∂t

(
tan z

w

)
=

w · sec2 z · ∂z∂t − tan z · ∂w∂t
w2

= (2)2
(
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

)
−
√

3

(
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t

)

= 4[(3)(1) + (2)(−1)]−
√

3[(2)(1) + (−3)(−1)] = 4− 5
√

3
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