The Chain Rule

- Back in Calculus I, we used the Chain Rule to compute derivatives of composite functions.

The Chain Rule

- Back in Calculus I, we used the Chain Rule to compute derivatives of composite functions. Explicitly, the Chain Rule says that

$$
\frac{d}{d x} g(f(x))=g^{\prime}(f(x)) f^{\prime}(x)
$$

The Chain Rule

- Back in Calculus I, we used the Chain Rule to compute derivatives of composite functions. Explicitly, the Chain Rule says that

$$
\frac{d}{d x} g(f(x))=g^{\prime}(f(x)) f^{\prime}(x) .
$$

Primarily, the Chain Rule allows us to compute derivatives of functions that implicitly depend upon a variable t - often time.

The Chain Rule

- Back in Calculus I, we used the Chain Rule to compute derivatives of composite functions. Explicitly, the Chain Rule says that

$$
\frac{d}{d x} g(f(x))=g^{\prime}(f(x)) f^{\prime}(x) .
$$

Primarily, the Chain Rule allows us to compute derivatives of functions that implicitly depend upon a variable t - often time. Essentially, if $x=f(t)$ is a differentiable function of time, then $g(x)=g(f(t))$ is a differentiable function of time such that

$$
\frac{d}{d t} g(x)=\frac{d}{d t} g(f(t))=g^{\prime}(f(t)) \cdot f^{\prime}(t)=g^{\prime}(x) \cdot f^{\prime}(t)=\frac{d g}{d x} \frac{d x}{d t}
$$

The Chain Rule

- Of course, we can generalize this idea to functions of several variables, each of which depends implicitly on another variable t.

The Chain Rule

- Of course, we can generalize this idea to functions of several variables, each of which depends implicitly on another variable t. Explicitly, given differentiable functions $x=g(t)$ and $y=h(t)$, $z=f(x, y)=f(x(t), y(t))$ is a differentiable function of t with

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

The Chain Rule

- Of course, we can generalize this idea to functions of several variables, each of which depends implicitly on another variable t. Explicitly, given differentiable functions $x=g(t)$ and $y=h(t)$, $z=f(x, y)=f(x(t), y(t))$ is a differentiable function of t with

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

- We note that this formula is specific neither to the number of variables x_{1}, \ldots, x_{n} upon which the function f depends nor the number of implicit variables t_{1}, \ldots, t_{k} upon which those x_{i} variables depend.

The Chain Rule

- Of course, we can generalize this idea to functions of several variables, each of which depends implicitly on another variable t. Explicitly, given differentiable functions $x=g(t)$ and $y=h(t)$, $z=f(x, y)=f(x(t), y(t))$ is a differentiable function of t with

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

- We note that this formula is specific neither to the number of variables x_{1}, \ldots, x_{n} upon which the function f depends nor the number of implicit variables t_{1}, \ldots, t_{k} upon which those x_{i} variables depend. Ultimately, the recipe is always given by

$$
\frac{\partial f}{\partial t_{j}}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial t_{j}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{j}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{j}}
$$

The Chain Rule

- Consider the function $f(x, y)$. We can take the partial derivatives of f in terms of polar coordinates (r, θ) since $x=r \cos \theta$ and $y=r \sin \theta$ are both differentiable functions of r and θ.

The Chain Rule

- Consider the function $f(x, y)$. We can take the partial derivatives of f in terms of polar coordinates (r, θ) since $x=r \cos \theta$ and $y=r \sin \theta$ are both differentiable functions of r and θ. Explicitly, we compute

$$
\frac{\partial x}{\partial r}=\cos \theta
$$

The Chain Rule

- Consider the function $f(x, y)$. We can take the partial derivatives of f in terms of polar coordinates (r, θ) since $x=r \cos \theta$ and $y=r \sin \theta$ are both differentiable functions of r and θ. Explicitly, we compute

$$
\frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta
$$

The Chain Rule

- Consider the function $f(x, y)$. We can take the partial derivatives of f in terms of polar coordinates (r, θ) since $x=r \cos \theta$ and $y=r \sin \theta$ are both differentiable functions of r and θ. Explicitly, we compute

$$
\frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta, \frac{\partial y}{\partial r}=\sin \theta
$$

The Chain Rule

- Consider the function $f(x, y)$. We can take the partial derivatives of f in terms of polar coordinates (r, θ) since $x=r \cos \theta$ and $y=r \sin \theta$ are both differentiable functions of r and θ. Explicitly, we compute

$$
\frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta, \frac{\partial y}{\partial r}=\sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta
$$

The Chain Rule

- Consider the function $f(x, y)$. We can take the partial derivatives of f in terms of polar coordinates (r, θ) since $x=r \cos \theta$ and $y=r \sin \theta$ are both differentiable functions of r and θ. Explicitly, we compute

$$
\begin{gathered}
\frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta, \frac{\partial y}{\partial r}=\sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta \\
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta=\frac{x f_{x}+y f_{y}}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \\
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}=-r \sin \theta f_{x}+r \cos \theta f_{y}=-y f_{x}+x f_{y}
\end{gathered}
$$

The Chain Rule

- Computing derivatives of multivariable functions by the Chain Rule can be reduced to a relatively simple algorithm. For simplicity, we will demonstrate the algorithm on $f(x, y)=f(x(s, t), y(s, t))$.

The Chain Rule

- Computing derivatives of multivariable functions by the Chain Rule can be reduced to a relatively simple algorithm. For simplicity, we will demonstrate the algorithm on $f(x, y)=f(x(s, t), y(s, t))$.
(1) Compute the partials of f with respect to x and y.

The Chain Rule

- Computing derivatives of multivariable functions by the Chain Rule can be reduced to a relatively simple algorithm. For simplicity, we will demonstrate the algorithm on $f(x, y)=f(x(s, t), y(s, t))$.
(1) Compute the partials of f with respect to x and y.
(2) Compute the partials of x and y with respect to s.

The Chain Rule

- Computing derivatives of multivariable functions by the Chain Rule can be reduced to a relatively simple algorithm. For simplicity, we will demonstrate the algorithm on $f(x, y)=f(x(s, t), y(s, t))$.
(1) Compute the partials of f with respect to x and y.
(2) Compute the partials of x and y with respect to s.
(3) By the Chain Rule, we have that $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$.

The Chain Rule

- Computing derivatives of multivariable functions by the Chain Rule can be reduced to a relatively simple algorithm. For simplicity, we will demonstrate the algorithm on $f(x, y)=f(x(s, t), y(s, t))$.
(1) Compute the partials of f with respect to x and y.
(2) Compute the partials of x and y with respect to s.
(3) By the Chain Rule, we have that $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$.
(9) Compute the partials of x and y with respect to t.

The Chain Rule

- Computing derivatives of multivariable functions by the Chain Rule can be reduced to a relatively simple algorithm. For simplicity, we will demonstrate the algorithm on $f(x, y)=f(x(s, t), y(s, t))$.
(1) Compute the partials of f with respect to x and y.
(2) Compute the partials of x and y with respect to s.
(3) By the Chain Rule, we have that $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$.
(9) Compute the partials of x and y with respect to t.
(9) By the Chain Rule, we have that $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$.

The Chain Rule

$$
f(x, y) \underbrace{\partial / \partial x}_{y(s, t)} x \underbrace{\partial / \partial t}_{t} s
$$

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.
(1) Compute the partials of f with respect to x, y, and z.

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.
(1) Compute the partials of f with respect to x, y, and z.

$$
\frac{\partial f}{\partial x}=y z e^{x y z}, \frac{\partial f}{\partial y}=x z e^{x y z}, \frac{\partial f}{\partial z}=x y e^{x y z}
$$

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.
(1) Compute the partials of f with respect to x, y, and z.

$$
\frac{\partial f}{\partial x}=y z e^{x y z}, \frac{\partial f}{\partial y}=x z e^{x y z}, \frac{\partial f}{\partial z}=x y e^{x y z}
$$

(2) Compute the partials of x, y, and z with respect to t.

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.
(1) Compute the partials of f with respect to x, y, and z.

$$
\frac{\partial f}{\partial x}=y z e^{x y z}, \frac{\partial f}{\partial y}=x z e^{x y z}, \frac{\partial f}{\partial z}=x y e^{x y z}
$$

(2) Compute the partials of x, y, and z with respect to t.

$$
\frac{\partial x}{\partial t}=2 t, \frac{\partial y}{\partial t}=s, \frac{\partial z}{\partial t}=1
$$

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.
(1) Compute the partials of f with respect to x, y, and z.

$$
\frac{\partial f}{\partial x}=y z e^{x y z}, \frac{\partial f}{\partial y}=x z e^{x y z}, \frac{\partial f}{\partial z}=x y e^{x y z}
$$

(2) Compute the partials of x, y, and z with respect to t.

$$
\frac{\partial x}{\partial t}=2 t, \frac{\partial y}{\partial t}=s, \frac{\partial z}{\partial t}=1
$$

(3) By the Chain Rule, we have that $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}$.

The Chain Rule

- Given that $x(s, t)=t^{2}, y(s, t)=s t$, and $z(s, t)=t-s$, let us use the Chain Rule to compute $\frac{\partial f}{\partial t}$ of $f(x, y, z)=e^{x y z}$.
(1) Compute the partials of f with respect to x, y, and z.

$$
\frac{\partial f}{\partial x}=y z e^{x y z}, \frac{\partial f}{\partial y}=x z e^{x y z}, \frac{\partial f}{\partial z}=x y e^{x y z}
$$

(2) Compute the partials of x, y, and z with respect to t.

$$
\frac{\partial x}{\partial t}=2 t, \frac{\partial y}{\partial t}=s, \frac{\partial z}{\partial t}=1
$$

(3) By the Chain Rule, we have that $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}$.

$$
\frac{\partial f}{\partial t}=e^{t^{3} s(t-s)}\left[(s t)(t-s)(2 t)+\left(t^{2}\right)(t-s)(s)+\left(t^{2}\right)(s t)(1)\right]
$$

The Chain Rule

- Given differentiable functions $x=h(s, t), y=k(s, t), w=f(x, y)$, and $z=g(x, y)$, use the table to compute the given derivatives.

$$
\begin{array}{llll}
\frac{\partial w}{\partial x}=2 & \frac{\partial z}{\partial x}=3 & \frac{\partial x}{\partial s}=-1 & \frac{\partial x}{\partial t}=1 \\
\frac{\partial w}{\partial y}=-3 & \frac{\partial z}{\partial y}=2 & \frac{\partial y}{\partial s}=-2 & \frac{\partial y}{\partial t}=-1
\end{array}
$$

The Chain Rule

(1) Compute the value of $\frac{\partial}{\partial s}(w-z)$ whenever $w=10$ and $z=-7$.

$$
\begin{aligned}
\frac{\partial}{\partial s}(w-z) & =\frac{\partial w}{\partial s}-\frac{\partial z}{\partial s} \\
& =\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}-\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}-\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& =(2)(-1)+(-3)(-2)-(3)(-1)-(2)(-2) \\
& =-2+6+3+4=11
\end{aligned}
$$

The Chain Rule

(2) Compute the value of $\frac{\partial}{\partial t}\left(\frac{\tan z}{w}\right)$ whenever $w=1$ and $z=\frac{\pi}{3}$.

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{\tan z}{w}\right) & =\frac{w \cdot \sec ^{2} z \cdot \frac{\partial z}{\partial t}-\tan z \cdot \frac{\partial w}{\partial t}}{w^{2}} \\
& =(2)^{2}\left(\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}\right)-\sqrt{3}\left(\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}\right) \\
& =4[(3)(1)+(2)(-1)]-\sqrt{3}[(2)(1)+(-3)(-1)]=4-5 \sqrt{3}
\end{aligned}
$$

