
The Gradient

Given a differentiable function f (x , y), we define the gradient of f at
a point P = (a, b) to be the vector ∇fP = 〈fx(a, b), fy (a, b)〉.

We
refer to the ∇ symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n ≥ 3 dimensions.

Closely related to the derivative, the gradient operator ∇ follows the
usual laws of differentiation. For instance, we have that

∇(f + g) = ∇f +∇g ;

∇(Cf ) = C∇f for all constants C ;

∇(fg) = f∇g + g∇f , i.e., the Product Rule holds; and

∇(g ◦ f ) = (g ′ ◦ f )∇f for any differentiable function g of one variable,
i.e., the Chain Rule holds.
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The Directional Derivative

Given a differentiable function of several variables, one may consider
the tangent line in (infinitely) many directions.

Consequently, we
define the directional derivative of f (x , y) at a point P = (a, b) in
the direction of a unit vector u = 〈h, k〉 by the limit

Duf (P) = lim
t→0

f (a + th, b + tk)− f (a, b)

t
.

Once all the dust settles in the limit, we have that

Duf (P) = ∇fP · u.
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The Directional Derivative

Using the geometric definition of the dot product, we have that

Duf (P) = ||∇fP || cos θ,

where θ is the angle between ∇fP and u.

Consequently, we have that

∇fP points in the direction of the maximum rate of increase of f at P;

−∇fP points in the direction of the maximum rate of decrease at P;

∇fP is orthogonal to the level curve (or surface) at P; and

||∇fP || gives the maximum rate of increase of f at P.
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The Angle of Inclination

Consider travelling along a three-dimensional surface z = f (x , y).

We
can geometrically describe the directional derivative of f at a point
P = (a, b) in the direction of a unit vector u as

Duf (P) = tanψ,

where ψ is the angle of inclination. By our previous discussion, the
steepest direction on the surface z = f (x , y) is toward ∇fP .
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The Angle of Inclination

Consider hiking on a terrain modeled by z = x2 + y2 − y and
stopping at the point (1, 2, 3) to enjoy the scenery.

Resuming the
walk and heading due East, i.e., in the direction of u = 〈1, 0〉, we
would encounter an angle of inclination given by

ψ = tan−1(Duf (P)) = tan−1(∇fP · u) = tan−1(fx(P)) ≈ 63.5◦.

By walking in the direction of 1
||∇fP ||∇fP , we would encounter the

steepest slopes, and the angle of inclination would be

ψ = tan−1(||∇fP ||) = tan−1(
√

22 + 32) ≈ 74.5◦.
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