The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)).
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The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)). We
refer to the V symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n > 3 dimensions.
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The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)). We
refer to the V symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n > 3 dimensions.

o Closely related to the derivative, the gradient operator V follows the
usual laws of differentiation.
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The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)). We
refer to the V symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n > 3 dimensions.

o Closely related to the derivative, the gradient operator V follows the
usual laws of differentiation. For instance, we have that

o V(f+g)=VIf+Vg;
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The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)). We
refer to the V symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n > 3 dimensions.

o Closely related to the derivative, the gradient operator V follows the
usual laws of differentiation. For instance, we have that

o V(f+g)=VIf+Vg;
o V(Cf) = CVf for all constants C;
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The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)). We
refer to the V symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n > 3 dimensions.

o Closely related to the derivative, the gradient operator V follows the
usual laws of differentiation. For instance, we have that

o V(f+g)=VIf+Vg;
o V(Cf) = CVf for all constants C;
o V(fg) =fVg+ gVf,ie., the Product Rule holds; and
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The Gradient

e Given a differentiable function f(x, y), we define the gradient of f at
a point P = (a, b) to be the vector Vfp = (f(a, b), f,(a, b)). We
refer to the V symbol as “del,” “nabla,” or “grad.” Of course, the
notion of gradient generalizes easily to n > 3 dimensions.

o Closely related to the derivative, the gradient operator V follows the
usual laws of differentiation. For instance, we have that

V(f+g)=Vf+Vg;

V(Cf) = CVf for all constants C;

V(fg) = fVg+ gVf, i.e., the Product Rule holds; and
V(

gof)= (g of)Vf for any differentiable function g of one variable,
i.e., the Chain Rule holds.
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The Directional Derivative

@ Given a differentiable function of several variables, one may consider
the tangent line in (infinitely) many directions.
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The Directional Derivative

@ Given a differentiable function of several variables, one may consider
the tangent line in (infinitely) many directions. Consequently, we
define the directional derivative of f(x,y) at a point P = (a, b) in
the direction of a unit vector u = (h, k) by the limit

f(a+ th,b+ tk) — f(a, b)

Duf(P) = lim . .
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The Directional Derivative

@ Given a differentiable function of several variables, one may consider
the tangent line in (infinitely) many directions. Consequently, we
define the directional derivative of f(x,y) at a point P = (a, b) in
the direction of a unit vector u = (h, k) by the limit

f th, b+ tk) — f(a, b
Duf(P) = lim (2 th: b th) = F(a,b)

t—0 t

Once all the dust settles in the limit, we have that

Duf(P) = Vfp - u.
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The Directional Derivative

@ Using the geometric definition of the dot product, we have that
Duf(P) = ||V fp|| cos,

where 6 is the angle between Vfp and u.
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The Directional Derivative

@ Using the geometric definition of the dot product, we have that
Duf(P) = ||V fp|| cos,
where 6 is the angle between Vfp and u. Consequently, we have that

e Vfp points in the direction of the maximum rate of increase of f at P;
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The Directional Derivative

@ Using the geometric definition of the dot product, we have that
Duf(P) = ||V fp|| cos,
where 6 is the angle between Vfp and u. Consequently, we have that

e Vfp points in the direction of the maximum rate of increase of f at P;

e —Vfp points in the direction of the maximum rate of decrease at P;

MATH 127 (Section 14.5) The Gradient and Directional Derivatives The University of Kansas



The Directional Derivative

@ Using the geometric definition of the dot product, we have that
Duf(P) = ||V fp|| cos,
where 6 is the angle between Vfp and u. Consequently, we have that

e Vfp points in the direction of the maximum rate of increase of f at P;
e —V/fp points in the direction of the maximum rate of decrease at P;

e Vfp is orthogonal to the level curve (or surface) at P; and
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The Directional Derivative

@ Using the geometric definition of the dot product, we have that
Duf(P) = ||V fp|| cos,
where 6 is the angle between Vfp and u. Consequently, we have that

e Vfp points in the direction of the maximum rate of increase of f at P;
e —Vfp points in the direction of the maximum rate of decrease at P;
e Vfp is orthogonal to the level curve (or surface) at P; and

o ||Vfp|| gives the maximum rate of increase of f at P.
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The Angle of Inclination

e Consider travelling along a three-dimensional surface z = f(x, y).
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The Angle of Inclination

e Consider travelling along a three-dimensional surface z = f(x, y). We
can geometrically describe the directional derivative of f at a point
P = (a, b) in the direction of a unit vector u as

Dyf(P) = tan1,

where v is the angle of inclination.
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The Angle of Inclination

e Consider travelling along a three-dimensional surface z = f(x, y). We
can geometrically describe the directional derivative of f at a point
P = (a, b) in the direction of a unit vector u as

Dyf(P) = tan1,

where 1 is the angle of inclination. By our previous discussion, the
steepest direction on the surface z = f(x, y) is toward Vfp.
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The Angle of Inclination

e Consider hiking on a terrain modeled by z = x> + y? — y and
stopping at the point (1,2, 3) to enjoy the scenery.
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The Angle of Inclination

e Consider hiking on a terrain modeled by z = x?> + y? — y and
stopping at the point (1,2, 3) to enjoy the scenery. Resuming the
walk and heading due East, i.e., in the direction of u = (1,0), we
would encounter an angle of inclination given by

Y = tan"Y(D,f(P)) = tan"1(Vfp - u) = tan"}(f(P)) ~ 63.5°.
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The Angle of Inclination

e Consider hiking on a terrain modeled by z = x?> + y? — y and
stopping at the point (1,2, 3) to enjoy the scenery. Resuming the
walk and heading due East, i.e., in the direction of u = (1,0), we
would encounter an angle of inclination given by

Y = tan"Y(D,f(P)) = tan"1(Vfp - u) = tan"}(f(P)) ~ 63.5°.

By walking in the direction of V#fpl\vﬁ)’ we would encounter the
steepest slopes, and the angle of inclination would be

Y = tan"1(||Vfp||) = tan " (/22 + 32) ~ 74.5°.
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