The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$.

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad."

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad." Of course, the notion of gradient generalizes easily to $n \geq 3$ dimensions.

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad." Of course, the notion of gradient generalizes easily to $n \geq 3$ dimensions.
- Closely related to the derivative, the gradient operator ∇ follows the usual laws of differentiation.

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad." Of course, the notion of gradient generalizes easily to $n \geq 3$ dimensions.
- Closely related to the derivative, the gradient operator ∇ follows the usual laws of differentiation. For instance, we have that
- $\nabla(f+g)=\nabla f+\nabla g ;$

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad." Of course, the notion of gradient generalizes easily to $n \geq 3$ dimensions.
- Closely related to the derivative, the gradient operator ∇ follows the usual laws of differentiation. For instance, we have that
- $\nabla(f+g)=\nabla f+\nabla g$;
- $\nabla(C f)=C \nabla f$ for all constants C;

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad." Of course, the notion of gradient generalizes easily to $n \geq 3$ dimensions.
- Closely related to the derivative, the gradient operator ∇ follows the usual laws of differentiation. For instance, we have that
- $\nabla(f+g)=\nabla f+\nabla g$;
- $\nabla(C f)=C \nabla f$ for all constants C;
- $\nabla(f g)=f \nabla g+g \nabla f$, i.e., the Product Rule holds; and

The Gradient

- Given a differentiable function $f(x, y)$, we define the gradient of f at a point $P=(a, b)$ to be the vector $\nabla f_{P}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle$. We refer to the ∇ symbol as "del," "nabla," or "grad." Of course, the notion of gradient generalizes easily to $n \geq 3$ dimensions.
- Closely related to the derivative, the gradient operator ∇ follows the usual laws of differentiation. For instance, we have that
- $\nabla(f+g)=\nabla f+\nabla g ;$
- $\nabla(C f)=C \nabla f$ for all constants C;
- $\nabla(f g)=f \nabla g+g \nabla f$, i.e., the Product Rule holds; and
- $\nabla(g \circ f)=\left(g^{\prime} \circ f\right) \nabla f$ for any differentiable function g of one variable, i.e., the Chain Rule holds.

The Directional Derivative

- Given a differentiable function of several variables, one may consider the tangent line in (infinitely) many directions.

The Directional Derivative

- Given a differentiable function of several variables, one may consider the tangent line in (infinitely) many directions. Consequently, we define the directional derivative of $f(x, y)$ at a point $P=(a, b)$ in the direction of a unit vector $\mathbf{u}=\langle h, k\rangle$ by the limit

$$
D_{\mathbf{u}} f(P)=\lim _{t \rightarrow 0} \frac{f(a+t h, b+t k)-f(a, b)}{t}
$$

The Directional Derivative

- Given a differentiable function of several variables, one may consider the tangent line in (infinitely) many directions. Consequently, we define the directional derivative of $f(x, y)$ at a point $P=(a, b)$ in the direction of a unit vector $\mathbf{u}=\langle h, k\rangle$ by the limit

$$
D_{\mathbf{u}} f(P)=\lim _{t \rightarrow 0} \frac{f(a+t h, b+t k)-f(a, b)}{t}
$$

Once all the dust settles in the limit, we have that

$$
D_{\mathbf{u}} f(P)=\nabla f_{P} \cdot \mathbf{u}
$$

The Directional Derivative

- Using the geometric definition of the dot product, we have that

$$
D_{\mathbf{u}} f(P)=\left\|\nabla f_{P}\right\| \cos \theta
$$

where θ is the angle between ∇f_{P} and \mathbf{u}.

The Directional Derivative

- Using the geometric definition of the dot product, we have that

$$
D_{\mathbf{u}} f(P)=\left\|\nabla f_{P}\right\| \cos \theta
$$

where θ is the angle between ∇f_{P} and \mathbf{u}. Consequently, we have that

- ∇f_{P} points in the direction of the maximum rate of increase of f at P;

The Directional Derivative

- Using the geometric definition of the dot product, we have that

$$
D_{\mathbf{u}} f(P)=\left\|\nabla f_{P}\right\| \cos \theta
$$

where θ is the angle between ∇f_{P} and \mathbf{u}. Consequently, we have that

- ∇f_{P} points in the direction of the maximum rate of increase of f at P;
- $-\nabla f_{P}$ points in the direction of the maximum rate of decrease at P;

The Directional Derivative

- Using the geometric definition of the dot product, we have that

$$
D_{\mathbf{u}} f(P)=\left\|\nabla f_{P}\right\| \cos \theta
$$

where θ is the angle between ∇f_{P} and \mathbf{u}. Consequently, we have that

- ∇f_{P} points in the direction of the maximum rate of increase of f at P;
- $-\nabla f_{P}$ points in the direction of the maximum rate of decrease at P;
- ∇f_{P} is orthogonal to the level curve (or surface) at P; and

The Directional Derivative

- Using the geometric definition of the dot product, we have that

$$
D_{\mathbf{u}} f(P)=\left\|\nabla f_{P}\right\| \cos \theta
$$

where θ is the angle between ∇f_{P} and \mathbf{u}. Consequently, we have that

- ∇f_{P} points in the direction of the maximum rate of increase of f at P;
- $-\nabla f_{P}$ points in the direction of the maximum rate of decrease at P;
- ∇f_{P} is orthogonal to the level curve (or surface) at P; and
- $\left\|\nabla f_{P}\right\|$ gives the maximum rate of increase of f at P.

The Angle of Inclination

- Consider travelling along a three-dimensional surface $z=f(x, y)$.

The Angle of Inclination

- Consider travelling along a three-dimensional surface $z=f(x, y)$. We can geometrically describe the directional derivative of f at a point $P=(a, b)$ in the direction of a unit vector \mathbf{u} as

$$
D_{\mathbf{u}} f(P)=\tan \psi
$$

where ψ is the angle of inclination.

The Angle of Inclination

- Consider travelling along a three-dimensional surface $z=f(x, y)$. We can geometrically describe the directional derivative of f at a point $P=(a, b)$ in the direction of a unit vector \mathbf{u} as

$$
D_{\mathbf{u}} f(P)=\tan \psi
$$

where ψ is the angle of inclination. By our previous discussion, the steepest direction on the surface $z=f(x, y)$ is toward ∇f_{P}.

The Angle of Inclination

- Consider hiking on a terrain modeled by $z=x^{2}+y^{2}-y$ and stopping at the point $(1,2,3)$ to enjoy the scenery.

The Angle of Inclination

- Consider hiking on a terrain modeled by $z=x^{2}+y^{2}-y$ and stopping at the point $(1,2,3)$ to enjoy the scenery. Resuming the walk and heading due East, i.e., in the direction of $\mathbf{u}=\langle 1,0\rangle$, we would encounter an angle of inclination given by

$$
\psi=\tan ^{-1}\left(D_{\mathbf{u}} f(P)\right)=\tan ^{-1}\left(\nabla f_{P} \cdot \mathbf{u}\right)=\tan ^{-1}\left(f_{x}(P)\right) \approx 63.5^{\circ}
$$

The Angle of Inclination

- Consider hiking on a terrain modeled by $z=x^{2}+y^{2}-y$ and stopping at the point $(1,2,3)$ to enjoy the scenery. Resuming the walk and heading due East, i.e., in the direction of $\mathbf{u}=\langle 1,0\rangle$, we would encounter an angle of inclination given by

$$
\psi=\tan ^{-1}\left(D_{\mathbf{u}} f(P)\right)=\tan ^{-1}\left(\nabla f_{P} \cdot \mathbf{u}\right)=\tan ^{-1}\left(f_{x}(P)\right) \approx 63.5^{\circ} .
$$

By walking in the direction of $\frac{1}{\left\|\nabla f_{P}\right\|} \nabla f_{P}$, we would encounter the steepest slopes, and the angle of inclination would be

$$
\psi=\tan ^{-1}\left(\left\|\nabla f_{P}\right\|\right)=\tan ^{-1}\left(\sqrt{2^{2}+3^{2}}\right) \approx 74.5^{\circ} .
$$

