## Locally Linear Property

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point.


## Locally Linear Property

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is locally linear.


## Locally Linear Property

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is locally linear.
- Basically, a function is locally linear whenever its graph is a line when magnified sufficiently many times under a microscope.


## Locally Linear Property

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is locally linear.
- Basically, a function is locally linear whenever its graph is a line when magnified sufficiently many times under a microscope.
- Explicitly, a function $f(x)$ is locally linear at $x=a$ whenever

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}=0
$$

i.e., $\lim _{x \rightarrow a} f^{\prime}(x)=f^{\prime}(a)$, i.e., $f^{\prime}(x)$ is continuous at $x=a$.

## Locally Linear Property

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is locally linear.
- Basically, a function is locally linear whenever its graph is a line when magnified sufficiently many times under a microscope.
- Explicitly, a function $f(x)$ is locally linear at $x=a$ whenever

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}=0
$$

i.e., $\lim _{x \rightarrow a} f^{\prime}(x)=f^{\prime}(a)$, i.e., $f^{\prime}(x)$ is continuous at $x=a$. We will return to this notion for functions of several variables

## The Tangent Plane

- Recall that a plane is uniquely determined by a point $P$ in the plane and a normal vector $\mathbf{n}$, i.e., a vector orthogonal to the plane.


## The Tangent Plane

- Recall that a plane is uniquely determined by a point $P$ in the plane and a normal vector $\mathbf{n}$, i.e., a vector orthogonal to the plane.
- Given a function $f(x, y)$ with partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ at $(a, b)$, we note that the vector $\mathbf{u}=\left\langle 1,0, f_{x}(a, b)\right\rangle$ determines the line tangent to $f(a, b)$ in the $x$-direction and $\mathbf{v}=\left\langle 0,1, f_{y}(a, b)\right\rangle$ determines the line tangent to $f(a, b)$ in the $y$-direction.


## The Tangent Plane

- Recall that a plane is uniquely determined by a point $P$ in the plane and a normal vector $\mathbf{n}$, i.e., a vector orthogonal to the plane.
- Given a function $f(x, y)$ with partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ at $(a, b)$, we note that the vector $\mathbf{u}=\left\langle 1,0, f_{x}(a, b)\right\rangle$ determines the line tangent to $f(a, b)$ in the $x$-direction and $\mathbf{v}=\left\langle 0,1, f_{y}(a, b)\right\rangle$ determines the line tangent to $f(a, b)$ in the $y$-direction.
- Consequently, we may take $\mathbf{n}=\mathbf{v} \times \mathbf{u}=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle$ so that

$$
f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-f(a, b))=0
$$

is the equation of the plane tangent to $f(x, y)$ at $(a, b)$.

## Locally Linear Property

- Using the equation of the tangent plane as our guide, we define the linearization of $f(x, y)$ at $(a, b)$ to be the linear function

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

## Locally Linear Property

- Using the equation of the tangent plane as our guide, we define the linearization of $f(x, y)$ at $(a, b)$ to be the linear function

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

We define also the error function $e(x, y)=f(x, y)-L(x, y)$.

## Locally Linear Property

- Using the equation of the tangent plane as our guide, we define the linearization of $f(x, y)$ at $(a, b)$ to be the linear function

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

We define also the error function $e(x, y)=f(x, y)-L(x, y)$.

- We say that $f(x, y)$ is locally linear at $(a, b)$ whenever

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{e(x, y)}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0
$$

## Locally Linear Property

- Using the equation of the tangent plane as our guide, we define the linearization of $f(x, y)$ at $(a, b)$ to be the linear function

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

We define also the error function $e(x, y)=f(x, y)-L(x, y)$.

- We say that $f(x, y)$ is locally linear at $(a, b)$ whenever

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{e(x, y)}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0
$$

i.e., the vertical distance from $f(x, y)$ to $L(x, y)$ tends to zero faster than the distance from $(x, y)$ to $(a, b)$ as $(x, y)$ tends to $(a, b)$.

## The Tangent Plane

## Equation of the Tangent Plane

Given a function $f(x, y)$ that is locally linear at $(a, b)$, the equation of the plane tangent to $f(x, y)$ at the point $(a, b)$ can be written as

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Observe that this is a generalization of the tangent line $y=f^{\prime}(a)(x-a)$.

## The Tangent Plane

## True (a.) or False (b.)

The tangent plane approximation of the function $f(x, y)=x^{2}+y^{2}$ at the origin $(0,0)$ is given by the equation $z=0$.

## The Tangent Plane

## True (a.) or False (b.)

The tangent plane approximation of the function $f(x, y)=x^{2}+y^{2}$ at the origin $(0,0)$ is given by the equation $z=0$.
(a.) True.

## The Tangent Plane

## True (a.) or False (b.)

The tangent plane approximation of the function $f(x, y)=x^{2}+y^{2}$ at the origin $(0,0)$ is given by the equation $z=0$.
(a.) True. We have that $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$ so that $f_{x}(0,0)=f_{y}(0,0)=f(0,0)$.

## The Tangent Plane

## True (a.) or False (b.)

The tangent plane approximation of the function $f(x, y)=x^{2}+y^{2}$ at the origin $(0,0)$ is given by the equation $z=0$.
(a.) True. We have that $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$ so that $f_{x}(0,0)=f_{y}(0,0)=f(0,0)$. Consequently, the equation of the plane tangent to $f(x, y)$ at the point $(0,0)$ is given by

$$
z=0(x-0)+0(y-0)+0=0
$$

## The Tangent Plane

## True (a.) or False (b.)

The tangent plane approximation of the function $f(x, y)=x^{2}+y^{2}$ at the origin $(0,0)$ is given by the equation $z=0$.
(a.) True. We have that $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$ so that $f_{x}(0,0)=f_{y}(0,0)=f(0,0)$. Consequently, the equation of the plane tangent to $f(x, y)$ at the point $(0,0)$ is given by

$$
z=0(x-0)+0(y-0)+0=0
$$

One other way to see this is that the graph of $f(x, y)=x^{2}+y^{2}$ is an elliptic paraboloid with an absolute minimum at $(0,0)$.

## Differentiability

- Like with functions of a single variable, we have that $f(x, y)$ is differentiable at $(a, b)$ if and only if it is locally linear at $(a, b)$.


## Differentiability

- Like with functions of a single variable, we have that $f(x, y)$ is differentiable at $(a, b)$ if and only if it is locally linear at $(a, b)$.
- Of course, in practice, this condition would be tedious to check.


## Differentiability

## Criteria for Differentiability

Given that the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ both exist and are continuous (as functions) near $(a, b), f(x, y)$ is differentiable at $(a, b)$.

## Differentiability

## True (a.) or False (b.) <br> $f(x, y)=\sqrt{x^{2}+y^{2}}$ is differentiable on $\mathbb{R}^{2}-\{(0,0)\}$.

## Differentiability

## True (a.) or False (b.) <br> $f(x, y)=\sqrt{x^{2}+y^{2}}$ is differentiable on $\mathbb{R}^{2}-\{(0,0)\}$.

(a.) True.

## Differentiability

## True (a.) or False (b.)

$f(x, y)=\sqrt{x^{2}+y^{2}}$ is differentiable on $\mathbb{R}^{2}-\{(0,0)\}$.
(a.) True. We have that

$$
f_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \text { and } f_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

and these exist and are continuous on $\mathbb{R}^{2}-\{(0,0)\}$.

## Differentiability

## True (a.) or False (b.)

$f(x, y)=\sqrt{x^{2}+y^{2}}$ is differentiable on $\mathbb{R}^{2}-\{(0,0)\}$.
(a.) True. We have that

$$
f_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \text { and } f_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

and these exist and are continuous on $\mathbb{R}^{2}-\{(0,0)\}$. We claim further that neither $f_{x}$ nor $f_{y}$ exist at the origin.

## Differentiability

## True (a.) or False (b.)

$f(x, y)=\sqrt{x^{2}+y^{2}}$ is differentiable on $\mathbb{R}^{2}-\{(0,0)\}$.
(a.) True. We have that

$$
f_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \text { and } f_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

and these exist and are continuous on $\mathbb{R}^{2}-\{(0,0)\}$. We claim further that neither $f_{x}$ nor $f_{y}$ exist at the origin. Considering that $f(x, 0)=|x|$ and $f(0, y)=|y|$ are not differentiable at the origin, it follows that the limits $f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}$ and $f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}$ DNE.

## Differentials and Linear Approximation

- Like before, a function $f(x, y)$ is differentiable at $(a, b)$ if and only if it is locally linear at $(a, b)$.


## Differentials and Linear Approximation

- Like before, a function $f(x, y)$ is differentiable at $(a, b)$ if and only if it is locally linear at $(a, b)$. Consequently, a differentiable function $f(x, y)$ can be approximated near $(a, b)$ by the tangent plane

$$
f(x, y) \approx f_{x}(a, b)(x-a)+f_{y}(a, b)(y-a)+f(a, b)
$$

## Differentials and Linear Approximation

- Like before, a function $f(x, y)$ is differentiable at $(a, b)$ if and only if it is locally linear at $(a, b)$. Consequently, a differentiable function $f(x, y)$ can be approximated near $(a, b)$ by the tangent plane

$$
f(x, y) \approx f_{x}(a, b)(x-a)+f_{y}(a, b)(y-a)+f(a, b)
$$

Often, we will use the notation $\Delta f=f(x, y)-f(a, b), \Delta x=x-a$, and $\Delta y=y-b$ so that the tangent plane approximation becomes

$$
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y
$$

## Differentials and Linear Approximation

## Using a Linear Approximation

Compute the value of $\sqrt{3.01^{2}+3.99^{2}}$ using a linear approximation.
(a.) 5.000
(c.) 5.002
(b.) 4.998
(d.) 7.000

## Differentials and Linear Approximation

## Using a Linear Approximation

Compute the value of $\sqrt{3.01^{2}+3.99^{2}}$ using a linear approximation.
(a.) 5.000
(c.) 5.002
(b.) 4.998
(d.) 7.000

Using the function $f(x, y)=\sqrt{x^{2}+y^{2}}$, we compute the tangent plane approximation at the point $(3.01,3.99)$ with $a=3$ and $b=4$. We have that $f_{x}(3,4)=0.6, f_{y}(3,4)=0.8$, and $f(3,4)=5$ so that

$$
f(3.01,3.99) \approx 0.6(3.01-3)+0.8(3.99-4)+5=4.998
$$

