• Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point.

• Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is **locally linear**.

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is **locally linear**.
- Basically, a function is locally linear whenever its graph is a line when magnified sufficiently many times under a microscope.

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is **locally linear**.
- Basically, a function is locally linear whenever its graph is a line when magnified sufficiently many times under a microscope.
- Explicitly, a function f(x) is locally linear at x = a whenever

$$\lim_{x\to a}\frac{f(x)-f(a)-f'(a)(x-a)}{x-a}=0,$$

i.e., $\lim_{x\to a} f'(x) = f'(a)$, i.e., f'(x) is continuous at x = a.

- Back in Calculus I, one of the first applications of taking derivatives was to compute the equation of the tangent line at a point. We could do this if and only if the function in question is **locally linear**.
- Basically, a function is locally linear whenever its graph is a line when magnified sufficiently many times under a microscope.
- Explicitly, a function f(x) is locally linear at x = a whenever

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0,$$

i.e., $\lim_{x\to a} f'(x) = f'(a)$, i.e., f'(x) is continuous at x = a. We will return to this notion for functions of several variables

• Recall that a plane is uniquely determined by a point *P* in the plane and a normal vector **n**, i.e., a vector orthogonal to the plane.

2 / 11

- Recall that a plane is uniquely determined by a point *P* in the plane and a normal vector **n**, i.e., a vector orthogonal to the plane.
- Given a function f(x, y) with partial derivatives f_x(a, b) and f_y(a, b) at (a, b), we note that the vector u = (1, 0, f_x(a, b)) determines the line tangent to f(a, b) in the x-direction and v = (0, 1, f_y(a, b)) determines the line tangent to f(a, b) in the y-direction.

- Recall that a plane is uniquely determined by a point *P* in the plane and a normal vector **n**, i.e., a vector orthogonal to the plane.
- Given a function f(x, y) with partial derivatives f_x(a, b) and f_y(a, b) at (a, b), we note that the vector u = (1, 0, f_x(a, b)) determines the line tangent to f(a, b) in the x-direction and v = (0, 1, f_y(a, b)) determines the line tangent to f(a, b) in the y-direction.
- Consequently, we may take $\mathbf{n} = \mathbf{v} \times \mathbf{u} = \langle f_x(a,b), f_y(a,b), -1 \rangle$ so that

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0$$

is the equation of the plane tangent to f(x, y) at (a, b).

Locally Linear Property

 Using the equation of the tangent plane as our guide, we define the linearization of f(x, y) at (a, b) to be the linear function

$$L(x, y) = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).$$

Locally Linear Property

 Using the equation of the tangent plane as our guide, we define the linearization of f(x, y) at (a, b) to be the linear function

$$L(x, y) = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).$$

We define also the error function e(x, y) = f(x, y) - L(x, y).

Locally Linear Property

 Using the equation of the tangent plane as our guide, we define the linearization of f(x, y) at (a, b) to be the linear function

$$L(x,y) = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

We define also the error function e(x, y) = f(x, y) - L(x, y).

• We say that f(x, y) is **locally linear** at (a, b) whenever

$$\lim_{(x,y)\to(a,b)}\frac{e(x,y)}{\sqrt{(x-a)^2+(y-b)^2}}=0,$$

• Using the equation of the tangent plane as our guide, we define the **linearization** of f(x, y) at (a, b) to be the linear function

$$L(x,y)=f_x(a,b)(x-a)+f_y(a,b)(y-b)+f(a,b).$$

We define also the error function e(x, y) = f(x, y) - L(x, y).

• We say that f(x, y) is **locally linear** at (a, b) whenever

$$\lim_{(x,y)\to(a,b)}\frac{e(x,y)}{\sqrt{(x-a)^2+(y-b)^2}}=0,$$

i.e., the vertical distance from f(x, y) to L(x, y) tends to zero faster than the distance from (x, y) to (a, b) as (x, y) tends to (a, b).

Equation of the Tangent Plane

Given a function f(x, y) that is locally linear at (a, b), the equation of the plane tangent to f(x, y) at the point (a, b) can be written as

$$z = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).$$

Observe that this is a generalization of the tangent line y = f'(a)(x - a).

The tangent plane approximation of the function $f(x, y) = x^2 + y^2$ at the origin (0,0) is given by the equation z = 0.

The tangent plane approximation of the function $f(x, y) = x^2 + y^2$ at the origin (0,0) is given by the equation z = 0.

(a.) True.

The tangent plane approximation of the function $f(x, y) = x^2 + y^2$ at the origin (0,0) is given by the equation z = 0.

(a.) True. We have that $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$ so that $f_x(0, 0) = f_y(0, 0) = f(0, 0)$.

The tangent plane approximation of the function $f(x, y) = x^2 + y^2$ at the origin (0,0) is given by the equation z = 0.

(a.) True. We have that $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$ so that $f_x(0,0) = f_y(0,0) = f(0,0)$. Consequently, the equation of the plane tangent to f(x, y) at the point (0,0) is given by

$$z = 0(x - 0) + 0(y - 0) + 0 = 0.$$

5 / 11

The tangent plane approximation of the function $f(x, y) = x^2 + y^2$ at the origin (0,0) is given by the equation z = 0.

(a.) True. We have that $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$ so that $f_x(0,0) = f_y(0,0) = f(0,0)$. Consequently, the equation of the plane tangent to f(x, y) at the point (0,0) is given by

$$z = 0(x - 0) + 0(y - 0) + 0 = 0.$$

One other way to see this is that the graph of $f(x, y) = x^2 + y^2$ is an elliptic paraboloid with an absolute minimum at (0, 0).

• Like with functions of a single variable, we have that f(x, y) is **differentiable** at (a, b) if and only if it is locally linear at (a, b).

- Like with functions of a single variable, we have that f(x, y) is **differentiable** at (a, b) if and only if it is locally linear at (a, b).
- Of course, in practice, this condition would be tedious to check.

Criteria for Differentiability

Given that the partial derivatives $f_x(x, y)$ and $f_y(x, y)$ both exist and are continuous (as functions) near (a, b), f(x, y) is differentiable at (a, b).

 $f(x,y) = \sqrt{x^2 + y^2}$ is differentiable on $\mathbb{R}^2 - \{(0,0)\}$.

 $f(x,y) = \sqrt{x^2 + y^2}$ is differentiable on $\mathbb{R}^2 - \{(0,0)\}$.

(a.) True.

 $f(x,y) = \sqrt{x^2 + y^2}$ is differentiable on $\mathbb{R}^2 - \{(0,0)\}$.

(a.) True. We have that

$$f_x(x,y) = rac{x}{\sqrt{x^2 + y^2}} ext{ and } f_y(x,y) = rac{y}{\sqrt{x^2 + y^2}},$$

and these exist and are continuous on $\mathbb{R}^2-\{(0,0)\}.$

 $f(x,y) = \sqrt{x^2 + y^2}$ is differentiable on $\mathbb{R}^2 - \{(0,0)\}$.

(a.) True. We have that

$$f_x(x,y) = rac{x}{\sqrt{x^2 + y^2}} ext{ and } f_y(x,y) = rac{y}{\sqrt{x^2 + y^2}},$$

and these exist and are continuous on $\mathbb{R}^2 - \{(0,0)\}$. We claim further that neither f_x nor f_y exist at the origin.

 $f(x,y) = \sqrt{x^2 + y^2}$ is differentiable on $\mathbb{R}^2 - \{(0,0)\}$.

(a.) True. We have that

$$f_x(x,y) = rac{x}{\sqrt{x^2 + y^2}} ext{ and } f_y(x,y) = rac{y}{\sqrt{x^2 + y^2}},$$

and these exist and are continuous on $\mathbb{R}^2 - \{(0,0)\}$. We claim further that neither f_x nor f_y exist at the origin. Considering that f(x,0) = |x| and f(0,y) = |y| are not differentiable at the origin, it follows that the limits $f_x(0,0) = \lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x}$ and $f_y(0,0) = \lim_{y\to 0} \frac{f(0,y)-f(0,0)}{y}$ DNE.

• Like before, a function f(x, y) is differentiable at (a, b) if and only if it is locally linear at (a, b).

9 / 11

• Like before, a function f(x, y) is differentiable at (a, b) if and only if it is locally linear at (a, b). Consequently, a differentiable function f(x, y) can be approximated near (a, b) by the tangent plane

$$f(x,y) \approx f_x(a,b)(x-a) + f_y(a,b)(y-a) + f(a,b).$$

• Like before, a function f(x, y) is differentiable at (a, b) if and only if it is locally linear at (a, b). Consequently, a differentiable function f(x, y) can be approximated near (a, b) by the tangent plane

$$f(x,y) \approx f_x(a,b)(x-a) + f_y(a,b)(y-a) + f(a,b).$$

Often, we will use the notation $\Delta f = f(x, y) - f(a, b)$, $\Delta x = x - a$, and $\Delta y = y - b$ so that the tangent plane approximation becomes

$$\Delta f \approx f_x(a,b)\Delta x + f_y(a,b)\Delta y.$$

9 / 11

Using a Linear Approximation

Compute the value of $\sqrt{3.01^2 + 3.99^2}$ using a linear approximation.

- (a.) 5.000 (c.) 5.002
- (b.) 4.998 (d.) 7.000

Using a Linear Approximation

Compute the value of $\sqrt{3.01^2 + 3.99^2}$ using a linear approximation.

Using the function $f(x, y) = \sqrt{x^2 + y^2}$, we compute the tangent plane approximation at the point (3.01, 3.99) with a = 3 and b = 4. We have that $f_x(3,4) = 0.6$, $f_y(3,4) = 0.8$, and f(3,4) = 5 so that

 $f(3.01, 3.99) \approx 0.6(3.01 - 3) + 0.8(3.99 - 4) + 5 = 4.998.$