
Locally Linear Property

Back in Calculus I, one of the first applications of taking derivatives
was to compute the equation of the tangent line at a point.

We could
do this if and only if the function in question is locally linear.

Basically, a function is locally linear whenever its graph is a line when
magnified sufficiently many times under a microscope.

Explicitly, a function f (x) is locally linear at x = a whenever

lim
x→a

f (x)− f (a)− f ′(a)(x − a)

x − a
= 0,

i.e., limx→a f
′(x) = f ′(a), i.e., f ′(x) is continuous at x = a. We will

return to this notion for functions of several variables
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The Tangent Plane

Recall that a plane is uniquely determined by a point P in the plane
and a normal vector n, i.e., a vector orthogonal to the plane.

Given a function f (x , y) with partial derivatives fx(a, b) and fy (a, b)
at (a, b), we note that the vector u = 〈1, 0, fx(a, b)〉 determines the
line tangent to f (a, b) in the x-direction and v = 〈0, 1, fy (a, b)〉
determines the line tangent to f (a, b) in the y -direction.

Consequently, we may take n = v× u = 〈fx(a, b), fy (a, b),−1〉 so that

fx(a, b)(x − a) + fy (a, b)(y − b)− (z − f (a, b)) = 0

is the equation of the plane tangent to f (x , y) at (a, b).
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Locally Linear Property

Using the equation of the tangent plane as our guide, we define the
linearization of f (x , y) at (a, b) to be the linear function

L(x , y) = fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b).

We define also the error function e(x , y) = f (x , y)− L(x , y).

We say that f (x , y) is locally linear at (a, b) whenever

lim
(x ,y)→(a,b)

e(x , y)√
(x − a)2 + (y − b)2

= 0,

i.e., the vertical distance from f (x , y) to L(x , y) tends to zero faster
than the distance from (x , y) to (a, b) as (x , y) tends to (a, b).
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The Tangent Plane

Equation of the Tangent Plane
Given a function f (x , y) that is locally linear at (a, b), the equation of the
plane tangent to f (x , y) at the point (a, b) can be written as

z = fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b).

Observe that this is a generalization of the tangent line y = f ′(a)(x − a).
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The Tangent Plane

True (a.) or False (b.)

The tangent plane approximation of the function f (x , y) = x2 + y2

at the origin (0, 0) is given by the equation z = 0.

(a.) True. We have that fx(x , y) = 2x and fy (x , y) = 2y so that
fx(0, 0) = fy (0, 0) = f (0, 0). Consequently, the equation of the plane
tangent to f (x , y) at the point (0, 0) is given by

z = 0(x − 0) + 0(y − 0) + 0 = 0.

One other way to see this is that the graph of f (x , y) = x2 + y2 is an
elliptic paraboloid with an absolute minimum at (0, 0).
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Differentiability

Like with functions of a single variable, we have that f (x , y) is
differentiable at (a, b) if and only if it is locally linear at (a, b).

Of course, in practice, this condition would be tedious to check.
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Differentiability

Criteria for Differentiability
Given that the partial derivatives fx(x , y) and fy (x , y) both exist and are
continuous (as functions) near (a, b), f (x , y) is differentiable at (a, b).
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Differentiability

True (a.) or False (b.)

f (x , y) =
√
x2 + y2 is differentiable on R2 − {(0, 0)}.

(a.) True. We have that

fx(x , y) =
x√

x2 + y2
and fy (x , y) =

y√
x2 + y2

,

and these exist and are continuous on R2 − {(0, 0)}. We claim further that
neither fx nor fy exist at the origin. Considering that f (x , 0) = |x | and
f (0, y) = |y | are not differentiable at the origin, it follows that the limits

fx(0, 0) = limx→0
f (x ,0)−f (0,0)

x and fy (0, 0) = limy→0
f (0,y)−f (0,0)

y DNE.
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Differentials and Linear Approximation

Like before, a function f (x , y) is differentiable at (a, b) if and only if
it is locally linear at (a, b).

Consequently, a differentiable function
f (x , y) can be approximated near (a, b) by the tangent plane

f (x , y) ≈ fx(a, b)(x − a) + fy (a, b)(y − a) + f (a, b).

Often, we will use the notation ∆f = f (x , y)− f (a, b), ∆x = x − a,
and ∆y = y − b so that the tangent plane approximation becomes

∆f ≈ fx(a, b)∆x + fy (a, b)∆y .
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Differentials and Linear Approximation

Using a Linear Approximation

Compute the value of
√

3.012 + 3.992 using a linear approximation.

(a.) 5.000 (c.) 5.002

(b.) 4.998 (d.) 7.000

Using the function f (x , y) =
√

x2 + y2, we compute the tangent plane
approximation at the point (3.01, 3.99) with a = 3 and b = 4. We have
that fx(3, 4) = 0.6, fy (3, 4) = 0.8, and f (3, 4) = 5 so that

f (3.01, 3.99) ≈ 0.6(3.01− 3) + 0.8(3.99− 4) + 5 = 4.998.
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