
Partial Derivatives

Recall that the derivative f ′(x) of a function f (x) of one variable is
given by the limit of the difference quotient of f (x) on the interval
[x , x + h] as h approaches 0. Explicitly, we have that

f ′(x) = lim
h→0

f (x + h) − f (x)

h
.

Considering that this is a function of x , we may compute the
derivative f ′(a) of f (x) at the point x = a by evaluating the limit

f ′(a) = lim
h→0

f (a + h) − f (a)

h
.
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Partial Derivatives

Observe that we may reduce a function f (x , y) in two variables to a
function g(x) = f (x , b) of one variable by fixing the value of y — say
y = b.

By analogy, we may then compute the one-variable limit

∂

∂x
f (a, b)

def
= fx(a, b)

def
=

d

dx
g(x)

∣∣∣∣
x=a

= lim
h→0

f (a + h, b) − f (a, b)

h
.

We refer to the quantity ∂
∂x f (a, b) = fx(a, b) as the partial

derivative of f (x , y) with respect to x at the point (a, b).

Likewise, we may perform a similar process with y . We refer to the
resulting quantity ∂

∂y f (a, b) = fy (a, b) as the partial derivative of
f (x , y) with respect to y at the point (a, b).
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Partial Derivatives

True (a.) or False (b.)

Given that f (x , y) = x2 + y2, evaluating the limit limh→0
(2+h)2−22

h
gives the quantity fx(2, 3).

(a.) True. By definition, we have that

fx(2, 3) = lim
h→0

f (2 + h, 3) − f (2, 3)

h
= lim

h→0

(2 + h)2 + 32 − (22 + 32)

h
.

Cancelling both 32 terms gives us the limit in question.
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Partial Derivatives

True (a.) or False (b.)

Given that f (x , y) = r(x) + s(y), we have that fy (x , y) = d
dy s(y).

(a.) True. By definition, we have that

fy (x , y) = lim
h→0

f (x , y + h) − f (x , y)

h

= lim
h→0

r(x) + s(y + h) − (r(x) + s(y))

h

= lim
h→0

s(y + h) − s(y)

h
,

and this last expression is exactly d
dy s(y).
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Computing Partial Derivatives

Computing partial derivatives via the limit definition of the derivative
is in practice a tedious undertaking.

Luckily, we may apply the tried
and true rules of differentiation from Calculus I to partial derivatives.

Explicitly, given a function f (x , y), if we wish to compute fx(x , y), we
may substitute a box � in place of the variable y ; subsequently
compute the derivative of g(x) = f (x ,�) by treating the boxes as
constants; and finally replace all of the boxes with the variable y .

Likewise, we may compute fy (x , y) by a similar process that replaces
each occurrence of x with a diamond ♦.
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Computing Partial Derivatives

Consider the function f (x , y) = arctan
( y
x

)
. We will compute the

partial derivatives fx(x , y) and fy (x , y).

Replacing y by � gives the function f (x) = arctan
(
�
x

)
. We have that

f ′(x) =
1

1 + �2

x2

·
(
− �

x2

)
= − �

x2 + �2

by the Chain Rule. Consequently, replacing � with y gives the desired

partial derivative fx(x , y) = − y

x2 + y2
.

By a similar process using x and ♦, we have that fy (x , y) =
x

x2 + y2
.
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Computing Partial Derivatives

Using the Chain Rule
For which of the following functions must one implement the Chain
Rule when taking the partial derivative with respect to x?

(a.) f (x , y) =
xy

sin x
(c.) h(x , y) = x2y3

(b.) g(x , y) = arctan
(
x
y

)
(d.) k(x , y) = ln(y2)

x

We note that the partial derivative of x
y with respect to x is 1

y , hence we
must apply the Chain Rule to compute this derivative.
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Computing Partial Derivatives

Using the Product Rule
For which of the following functions must one implement the
Product Rule when taking the partial derivative with respect to z?

(a.) f (x , y , z) = x + y + z (c.) h(x , y , z) = xy + cos(z2)

(b.) g(x , y , z) = ex
yz

(d.) k(x , y , z) = sin(xz) cos(yz)

We have a product of functions that both involve z , hence we must use
the Product Rule with respect to z to compute this derivative.
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Higher Order Partial Derivatives

Like with derivatives of functions of one variable, we can take higher
order partial derivatives of functions of several variables;

however, we
now have a choice as to which variable we differentiate.

Consider the function f (x , y) = x2 + y2. We have that fx(x , y) = 2x
and fy (x , y) = 2y , but each of these functions is differentiable with
respect to both x and y , hence we can compute

fxx(x , y) =
∂

∂x
fx(x , y) = 2 =

∂

∂y
fy (x , y) = fyy (x , y),

and we can also compute the mixed partials

fxy (x , y) =
∂

∂y
fx(x , y) = 0 =

∂

∂x
fy (x , y) = fyx(x , y).

Observe that fxx = fyy and fyx = fxy . One is coincident; one is not.
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Higher Order Partial Derivatives

Clairaut’s Theorem
Given a function f (x1, . . . , xn) whose kth-order partial derivatives are all
continuous, the kth mixed partials of f can be computed in any order.

Clairaut’s Theorem asserts that the equality of fyx and fxy in the previous
example is not a coincidence but that in fact this is always the case so
long as the second-order partial derivatives are all continuous.
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Higher Order Partial Derivatives

True (a.) or False (b.)
Given a function f (x , y), the mixed partial derivative fxyxy can be
found by first taking the partial derivative in x , then taking the
partial derivative in y , then in x again, and finally in y again.

(b.) True. We read mixed partial derivatives in subscript notation from
left to right.
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Higher Order Partial Derivatives

True (a.) or False (b.)
Given a function f (x , y), the mixed partial derivative fxyxy can be

found by applying the differential operator ∂4

∂x∂y∂x∂y to f (x , y).

(b.) False. We read mixed partial derivatives in operator notation from

right to left, hence we have that ∂4

∂x∂y∂x∂y f (x , y) = fyxyx . Unless Clairaut’s
Theorem holds for f (x , y), this function might not be the same as fxyxy .
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found by applying the differential operator ∂4

∂x∂y∂x∂y to f (x , y).

(b.) False. We read mixed partial derivatives in operator notation from

right to left, hence we have that ∂4

∂x∂y∂x∂y f (x , y) = fyxyx . Unless Clairaut’s
Theorem holds for f (x , y), this function might not be the same as fxyxy .
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Higher Order Partial Derivatives

Using Clairaut’s Theorem
Given that f (w , x , y , z) = 2xy + 3xz + 5yz + w7, compute fzyxw .

(a.) fzyxw = −5 ln y
z2

(c.) fzyxw = 0

(b.) fzyxw = 7 · 6 · 5 · 4 (d.) fzyxw = 2x + 3z + 5y + 7

We note that the fourth-order mixed partial derivatives are all continuous
since they are sums, differences, products, and quotients of compositions
of continuous functions. By Clairaut’s Theorem, we have that
fwxyz = fzxyw = fzxy7w6 = 0.
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Higher Order Partial Derivatives

Using Clairaut’s Theorem
Given that f (w , x , y , z) = 2xy + 3xz + 5yz + w7, compute fzyxw .

(a.) fzyxw = −5 ln y
z2

(c.) fzyxw = 0

(b.) fzyxw = 7 · 6 · 5 · 4 (d.) fzyxw = 2x + 3z + 5y + 7

We note that the fourth-order mixed partial derivatives are all continuous
since they are sums and products of compositions of continuous functions.
By Clairaut’s Theorem, we have that fzyxw = fwxyz = ∂3

∂z∂y∂x 7w6 = 0.
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