Partial Derivatives

@ Recall that the derivative f/(x) of a function f(x) of one variable is
given by the limit of the difference quotient of f(x) on the interval
[x,x + h] as h approaches 0. Explicitly, we have that

f(x+ h) —f(x)

f'(x)=li
(x) Pt
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Partial Derivatives

@ Recall that the derivative f/(x) of a function f(x) of one variable is
given by the limit of the difference quotient of f(x) on the interval
[x,x + h] as h approaches 0. Explicitly, we have that

i+ h) = Fx)

f'(x)=li
(x) Pt

@ Considering that this is a function of x, we may compute the
derivative f’(a) of f(x) at the point x = a by evaluating the limit

£(2) :,ljg‘o f(a+hl)1— f(a).
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Partial Derivatives

@ Observe that we may reduce a function f(x, y) in two variables to a
function g(x) = f(x, b) of one variable by fixing the value of y — say
y=b.
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Partial Derivatives

@ Observe that we may reduce a function f(x, y) in two variables to a
function g(x) = f(x, b) of one variable by fixing the value of y — say
y = b. By analogy, we may then compute the one-variable limit

0 def d

. f(a+hb)—f(a,b)
(@ b) € £ (a, b)= S ekx)| = lim :
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Partial Derivatives

@ Observe that we may reduce a function f(x, y) in two variables to a
function g(x) = f(x, b) of one variable by fixing the value of y — say
y = b. By analogy, we may then compute the one-variable limit

0 def d :
a—f( b) fx(a, b) = e g(x) = lim

x—=2a h—0

f(a+ h,b) —f(a,b)

We refer to the quantity %f(a7 b) = fi(a, b) as the partial
derivative of f(x,y) with respect to x at the point (a, b).
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Partial Derivatives

@ Observe that we may reduce a function f(x, y) in two variables to a
function g(x) = f(x, b) of one variable by fixing the value of y — say
y = b. By analogy, we may then compute the one-variable limit

9 def d . f(a+h,b)—f(a,b)
a—f( b) fx(a, b)—dX g(x) = lim )

x—=2a h—0

We refer to the quantity %f(a7 b) = fi(a, b) as the partial
derivative of f(x,y) with respect to x at the point (a, b).

o Likewise, we may perform a similar process with y. We refer to the
resulting quantity —f(a b) = f,(a, b) as the partial derivative of
f(x,y) with respect to y at the point (a, b).
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Partial Derivatives

True (a.) or False (b.)

Given that f(x,y) = x? + y2, evaluating the limit limp_,q —(2+h)2 =

gives the quantity £(2, 3).
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Partial Derivatives

True (a.) or False (b.)

Given that f(x,y) = x? + y2, evaluating the limit limp_,q —(2+h)2 =

gives the quantity £(2, 3).

(a.) True.
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Partial Derivatives

True (a.) or False (b.)

Given that f(x,y) = x? + y2, evaluating the limit limp_,q —(2+h)2 =

gives the quantity £(2, 3).

(a.) True. By definition, we have that

_ 2 2 (92 2
£(2,3) = lim f(2+ h,3) f(2,3):IIm 2+ h)*+3 (2 +3).
h—0 h h—0 h
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Partial Derivatives

True (a.) or False (b.)

Given that f(x,y) = x? + y2, evaluating the limit limp_,q —(2+h)2 =

gives the quantity £(2, 3).

(a.) True. By definition, we have that

— 2 2 (92 2
£(2.3) = lim fe+h3)—F(23) | (2+h)?°+3°-(22+3%)
h=0 h h—0 h

Cancelling both 32 terms gives us the limit in question.
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Partial Derivatives

True (a.) or False (b.)

Given that f(x,y) = r(x) + s(y), we have that f,(x,y) = dy s(y)-
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Partial Derivatives

True (a.) or False (b.)
Given that f(x,y) = r(x) + s(y), we have that f,(x,y) = dy s(y).

(a.) True. By definition, we have that
f h)—f
(%, y) = lim (x,y +h) — f(x,y)

h—0 h
e T+ sy + h) = (r(9) + ()

h—0 h
_ i S h) = s(y)
h—0 h

Y

and this last expression is exactly d%s(y).
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Partial Derivatives
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Computing Partial Derivatives

@ Computing partial derivatives via the limit definition of the derivative
is in practice a tedious undertaking.
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Computing Partial Derivatives

@ Computing partial derivatives via the limit definition of the derivative
is in practice a tedious undertaking. Luckily, we may apply the tried
and true rules of differentiation from Calculus | to partial derivatives.
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Computing Partial Derivatives

@ Computing partial derivatives via the limit definition of the derivative
is in practice a tedious undertaking. Luckily, we may apply the tried
and true rules of differentiation from Calculus | to partial derivatives.

e Explicitly, given a function f(x,y), if we wish to compute f(x,y), we
may substitute a box [ in place of the variable y; subsequently
compute the derivative of g(x) = f(x, ) by treating the boxes as
constants; and finally replace all of the boxes with the variable y.
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Computing Partial Derivatives

@ Computing partial derivatives via the limit definition of the derivative
is in practice a tedious undertaking. Luckily, we may apply the tried
and true rules of differentiation from Calculus | to partial derivatives.

e Explicitly, given a function f(x,y), if we wish to compute f(x,y), we
may substitute a box [ in place of the variable y; subsequently
compute the derivative of g(x) = f(x, ) by treating the boxes as
constants; and finally replace all of the boxes with the variable y.

o Likewise, we may compute f,(x,y) by a similar process that replaces
each occurrence of x with a diamond ¢.
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Computing Partial Derivatives

e Consider the function f(x,y) = arctan (%) We will compute the

partial derivatives f(x, y) and f,(x,y).
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Computing Partial Derivatives

e Consider the function f(x,y) = arctan (%) We will compute the

partial derivatives f(x, y) and f,(x,y).

Replacing y by O gives the function f(x) = arctan (%)
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Computing Partial Derivatives

e Consider the function f(x,y) = arctan (%) We will compute the
partial derivatives f(x, y) and f,(x,y).

Replacing y by O gives the function f(x) = arctan (%) We have that

1 O O
f, = — —_— e —
) 1+ ( x2> x2 + [

by the Chain Rule.
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Computing Partial Derivatives

e Consider the function f(x,y) = arctan (£). We will compute the

partial derivatives f(x, y) and f,(x,y).

Replacing y by O gives the function f(x) = arctan (%) We have that

1 O O
f, = — —_— e —
) 1+ ( x2> x2 + [

by the Chain Rule. Consequently, replacing L] with y gives the desired

pal’tla| deriVatiVe fx(X7y) — —m
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Computing Partial Derivatives

e Consider the function f(x,y) = arctan (%) We will compute the
partial derivatives f(x, y) and f,(x,y).

Replacing y by O gives the function f(x) = arctan (%) We have that

1 O O
f, = — —_— e —
) 1+ ( x2> x2 + [

by the Chain Rule. Consequently, replacing L] with y gives the desired

pal’tla| deriVatiVe fx(X7y) — —m

X

By a similar process using x and ¢, we have that f,(x,y) = feal
X y
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Computing Partial Derivatives

Using the Chain Rule

For which of the following functions must one implement the Chain
Rule when taking the partial derivative with respect to x?

Xy

(a') f(Xv)/) = ﬁ (C) h(X,y) — X2y3
(b.) g(x,y) = arctan () (d.) k(x,y) = In(XyZ)
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Computing Partial Derivatives

Using the Chain Rule

For which of the following functions must one implement the Chain
Rule when taking the partial derivative with respect to x?

(@) floy) = 27 () h(x,y) = x2y3
(b.) g(x,y) = arctan (5) (d) k(x,y) = |n()}(,2)

We note that the partial derivative of % with respect to x is }%, hence we
must apply the Chain Rule to compute this derivative.
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Computing Partial Derivatives

Using the Product Rule

For which of the following functions must one implement the
Product Rule when taking the partial derivative with respect to z?

(a) f(x,y,z)=x+y+z (c.) h(x,y,z) = xy + cos(z?)

z

(b.) g(x,y,z) =& (d.) k(x,y,z) = sin(xz) cos(yz)
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Computing Partial Derivatives

Using the Product Rule

For which of the following functions must one implement the
Product Rule when taking the partial derivative with respect to z?

(a) f(x,y,z)=x+y+z (c.) h(x,y,z) = xy + cos(z?)

(b.) g(x,y,z) = e (d.) k(x,y,z) = sin(xz) cos(yz)

We have a product of functions that both involve z, hence we must use
the Product Rule with respect to z to compute this derivative.
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Higher Order Partial Derivatives

o Like with derivatives of functions of one variable, we can take higher
order partial derivatives of functions of several variables;
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Higher Order Partial Derivatives

o Like with derivatives of functions of one variable, we can take higher
order partial derivatives of functions of several variables; however, we
now have a choice as to which variable we differentiate.
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Higher Order Partial Derivatives

o Like with derivatives of functions of one variable, we can take higher
order partial derivatives of functions of several variables; however, we
now have a choice as to which variable we differentiate.

e Consider the function f(x,y) = x? + y2.

MATH 127 (Section 14.3) Partial Derivatives The University of Kansas 11 /16



Higher Order Partial Derivatives

o Like with derivatives of functions of one variable, we can take higher
order partial derivatives of functions of several variables; however, we
now have a choice as to which variable we differentiate.

e Consider the function f(x,y) = x? 4+ y?. We have that fi(x,y) = 2x
and f,(x,y) = 2y, but each of these functions is differentiable with
respect to both x and y, hence we can compute

0 0
f(x,y) = afx(xﬂ) =2= @fy(xa)’) = fyy(’@)/)?

and we can also compute the mixed partials

0 0
fo(x,y) = afyfx(xvy) =0= &@(va) = fix(x,y).
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Higher Order Partial Derivatives

o Like with derivatives of functions of one variable, we can take higher
order partial derivatives of functions of several variables; however, we
now have a choice as to which variable we differentiate.

e Consider the function f(x,y) = x? 4+ y?. We have that fi(x,y) = 2x
and f,(x,y) = 2y, but each of these functions is differentiable with
respect to both x and y, hence we can compute

0 0
(X, y) = afx(xﬂ) =2= @fy(xa)’) = fyy(x,¥),
and we can also compute the mixed partials
0 0
fy (X, y) = @fx(xvy) =0=o-f(xy) = fix(x,¥).

Observe that f = f,,, and f,, = f,,. One is coincident; one is not.
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Higher Order Partial Derivatives

Clairaut’s Theorem

Given a function f(xq,...,x,) whose kth-order partial derivatives are all
continuous, the kth mixed partials of f can be computed in any order.
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Higher Order Partial Derivatives

Clairaut’s Theorem

Given a function f(xq,...,x,) whose kth-order partial derivatives are all
continuous, the kth mixed partials of f can be computed in any order.

Clairaut’s Theorem asserts that the equality of f,, and f,, in the previous
example is not a coincidence but that in fact this is always the case so
long as the second-order partial derivatives are all continuous.
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,y, can be
found by first taking the partial derivative in x, then taking the
partial derivative in y, then in x again, and finally in y again.
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,y, can be
found by first taking the partial derivative in x, then taking the
partial derivative in y, then in x again, and finally in y again.

(b.) True.
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,y, can be
found by first taking the partial derivative in x, then taking the
partial derivative in y, then in x again, and finally in y again.

(b.) True. We read mixed partial derivatives in subscript notation from
left to right.
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,,,, can be
found by applying the differential operator % to f(x,y).
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,,,, can be
found by applying the differential operator % to f(x,y).

(b.) False.
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,,,, can be
found by applying the differential operator % to f(x,y).

(b.) False. We read mixed partial derivatives in operator notation from
- 84
right to left, hence we have that mf(x,y) = fyyx-
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Higher Order Partial Derivatives

True (a.) or False (b.)

Given a function f(x, y), the mixed partial derivative f,,,, can be
found by applying the differential operator % to f(x,y).

(b.) False. We read mixed partial derivatives in operator notation from

right to left, hence we have that ﬁgxayf(x,y) = fyxyx. Unless Clairaut’s
Theorem holds for f(x, y), this function might not be the same as fy,, .
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Higher Order Partial Derivatives

Using Clairaut’s Theorem
Given that f(w,x,y,z) =2 + 3% + 5 + w’, compute foyn-

(3.) fzyxw = _5|Zr12y (C) fzyxw =0
(b) nyXW:7'6'5'4 (d) fzyXW:2X+3Z+5y+7
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Higher Order Partial Derivatives

Using Clairaut’s Theorem
Given that f(w,x,y,z) =2 + 3% + 5% + w’ compute foyy-

(a.) fzyxw = _5|Zr12y (C) fzyxw =0

(b) nyXW:7'6'5'4 (d) fzyXW:2X+3Z+5y+7

We note that the fourth-order mixed partial derivatives are all continuous

since they are sums and products of compositions of continuous functions.
. , 93

By Clairaut’s Theorem, we have that f,y = fuxy, = #}/()X?W6 =0.
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