
Limits in Several Variables

Recall that the limit limx→a f (x) of a function f (x) as x approaches a
measures the behavior of f (x) when |x − a| is very small.

Likewise, the limit lim(x ,y)→(a,b) f (x , y) of a function f (x , y) as (x , y)
approaches the point (a, b) measures the behavior of f (x , y) when the
distance

√
(x − a)2 + (y − b)2 from (x , y) to (a, b) is very small.
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Criteria for Existence of Limits in Several Variables

Caution: Limits in several variables are inherently more complicated
than limits in a single variable simply because there infinitely many
ways in which one may approach a point in Rn (n ≥ 3).

Caution: We have that lim(x ,y)→(a,b) f (x , y) = L if and only if
limt→t0 f (x(t), y(t)) = L for every parametric curve (x(t), y(t)) such
that limt→t0(x(t), y(t)) = (a, b).

Put in less complicated terms, the limit exists and equals L if and only
if it exists and equals L for every possible path from (x , y) to (a, b).

Caution: If the limit fails to exist for any path from (x , y) to (a, b),
then the limit does not exist.

Caution: If the limit obtained from one path does not equal the limit
obtained from another path, then the limit does not exist.
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Limits in Several Variables

True (a.) or False (b.)
We have that lim(x ,y)→(0,0) x = 0.

(a.) True. Given any parametric curve (x(t), y(t)) such that
limt→t0(x(t), y(t)) = (0, 0), we have that lim(x ,y)→(0,0) x(t) = 0.

One other way to see it is to convert to polar coordinates. We have that
x = r cos θ so that by the product rule for limits, we conclude that

lim
(x ,y)→(0,0)

x = lim
(r ,θ)→(0,0)

r cos θ = (lim
r→0

r)( lim
θ→0

cos θ) = 0.
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Limits in Several Variables

True (a.) or False (b.)

The limit lim(x ,y)→(0,0)
x

y
does not exist.

(a.) True. By approaching (0, 0) from the path y = mx , we have that

lim
(x ,y)→(0,0)

x

y
= lim

x→0

x

mx
=

1

m
.

Consequently, for different choices of m 6= 0, we obtain a different limit.
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Limits in Several Variables

One saving grace when computing limits in several variables is that
the familiar limit rules from Calculus I still hold.

1 lim(f + g) = lim f + lim g

2 lim(C · f ) = C · lim f for all constants C

3 lim(f · g) = (lim f )(lim g)

4 lim

(
f

g

)
=

lim f

lim g
whenever lim g 6= 0
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Continuity

Our definition of the limit inherently excludes the possibility that the
pair (x , y) ever reaches the point (a, b) so that we can carry out
cancellation and other useful operations in limit calculations.

We say that a function f (x , y) is continuous at a point (a, b)
whenever lim(x ,y)→(a,b) f (x , y) = f (a, b). We say that f (x , y) is
continuous on X whenever f (x , y) is continuous for each (a, b) in X .

Composition of continuous functions preserves continuity.

Polynomials, rational functions, power functions, trigonometric
functions, inverse trigonometric functions, exponential functions,
logarithmic functions, and any composite of these are continuous.
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Continuity

True (a.) or False (b.)

f (x , y) is continuous at P whenever 1
f (x ,y) is continuous at P.

(a.) True. Compositions of continuous functions are continuous. Given
that 1

f (x ,y) is continuous at P, we have that f (x , y) is continuous at P

since 1
x is continuous for x 6= 0 and f (x , y) = 1

x ◦
1

f (x ,y) .
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Computing Limits in Several Variables

We outline several strategies for computing limits in several variables.

Strategy: Given a continuous function, just plug and chug.

Strategy: Given an indeterminate form 0
0 , first check the limits along

the axes. If these don’t exist or are not equal, the limit doesn’t exist.

Strategy: Given that the limits along the axes exist and are equal
but our intuition says that the limit should not exist, convert one
variable into a function of the other, and check the limits again. If
these don’t exist or are not equal, the limit doesn’t exist.

Strategy: Given that all else has failed, convert to polar or cylindrical
coordinates. If the limit depends on the angle θ, then it does not
exist; otherwise, the limit exists and equals the computed number.
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Computing Limits in Several Variables

True (a.) or False (b.)
Given that f (x , 0) = 3 for x 6= 0 and f (0, y) = 5 for y 6= 0, we
have that lim(x ,y)→(0,0) f (x , y) = (3, 5).

(a.) False. Consider the piecewise function

f (x , y) =


0, if x = 0, y = 0;

3, if x 6= 0, y = 0;

5 if x = 0, y 6= 0; and
1

x+y if x 6= 0, y 6= 0.

On the path y = x , lim(x ,y)→(0,0) f (x , y) = limx→0
1
2x does not exist.
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Computing Limits in Several Variables

Computing Limits in Two Variables
Compute the limit lim(x ,y)→(0,0)

xy
3x2+y2 .

(a.) 1 (c.)
1

3

(b.) DNE (d.)
1

4

We first plug and chug to find the indeterminate form 0
0 . We try the x-

and y -axes to find that the limits both exist and equal 0. Using the path
y = mx , however, yields lim(x ,y)→(0,0)

xy
3x2+y2 = limx→0

mx2

(3+m2)x2
= m

3+m2 .
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