Limits in Several Variables

- Recall that the limit $\lim _{x \rightarrow a} f(x)$ of a function $f(x)$ as x approaches a measures the behavior of $f(x)$ when $|x-a|$ is very small.

Limits in Several Variables

- Recall that the limit $\lim _{x \rightarrow a} f(x)$ of a function $f(x)$ as x approaches a measures the behavior of $f(x)$ when $|x-a|$ is very small.
- Likewise, the limit $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ of a function $f(x, y)$ as (x, y) approaches the point (a, b) measures the behavior of $f(x, y)$ when the distance $\sqrt{(x-a)^{2}+(y-b)^{2}}$ from (x, y) to (a, b) is very small.

Criteria for Existence of Limits in Several Variables

- Caution: Limits in several variables are inherently more complicated than limits in a single variable simply because there infinitely many ways in which one may approach a point in $\mathbb{R}^{n}(n \geq 3)$.

Criteria for Existence of Limits in Several Variables

- Caution: Limits in several variables are inherently more complicated than limits in a single variable simply because there infinitely many ways in which one may approach a point in $\mathbb{R}^{n}(n \geq 3)$.
- Caution: We have that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if and only if $\lim _{t \rightarrow t_{0}} f(x(t), y(t))=L$ for every parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(a, b)$.

Criteria for Existence of Limits in Several Variables

- Caution: Limits in several variables are inherently more complicated than limits in a single variable simply because there infinitely many ways in which one may approach a point in $\mathbb{R}^{n}(n \geq 3)$.
- Caution: We have that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if and only if $\lim _{t \rightarrow t_{0}} f(x(t), y(t))=L$ for every parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(a, b)$.

Put in less complicated terms, the limit exists and equals L if and only if it exists and equals L for every possible path from (x, y) to (a, b).

Criteria for Existence of Limits in Several Variables

- Caution: Limits in several variables are inherently more complicated than limits in a single variable simply because there infinitely many ways in which one may approach a point in $\mathbb{R}^{n}(n \geq 3)$.
- Caution: We have that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if and only if $\lim _{t \rightarrow t_{0}} f(x(t), y(t))=L$ for every parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(a, b)$.

Put in less complicated terms, the limit exists and equals L if and only if it exists and equals L for every possible path from (x, y) to (a, b).

- Caution: If the limit fails to exist for any path from (x, y) to (a, b), then the limit does not exist.

Criteria for Existence of Limits in Several Variables

- Caution: Limits in several variables are inherently more complicated than limits in a single variable simply because there infinitely many ways in which one may approach a point in $\mathbb{R}^{n}(n \geq 3)$.
- Caution: We have that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if and only if $\lim _{t \rightarrow t_{0}} f(x(t), y(t))=L$ for every parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(a, b)$.

Put in less complicated terms, the limit exists and equals L if and only if it exists and equals L for every possible path from (x, y) to (a, b).

- Caution: If the limit fails to exist for any path from (x, y) to (a, b), then the limit does not exist.
- Caution: If the limit obtained from one path does not equal the limit obtained from another path, then the limit does not exist.

Limits in Several Variables

True (a.) or False (b.)

We have that $\lim _{(x, y) \rightarrow(0,0)} x=0$.

Limits in Several Variables

True (a.) or False (b.)

We have that $\lim _{(x, y) \rightarrow(0,0)} x=0$.
(a.) True.

Limits in Several Variables

True (a.) or False (b.)

We have that $\lim _{(x, y) \rightarrow(0,0)} x=0$.
(a.) True. Given any parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(0,0)$, we have that $\lim _{t \rightarrow t_{0}} x(t)=0$.

Limits in Several Variables

True (a.) or False (b.)

We have that $\lim _{(x, y) \rightarrow(0,0)} x=0$.
(a.) True. Given any parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(0,0)$, we have that $\lim _{t \rightarrow t_{0}} x(t)=0$.

One other way to see it is to convert to polar coordinates.

Limits in Several Variables

True (a.) or False (b.)

We have that $\lim _{(x, y) \rightarrow(0,0)} x=0$.
(a.) True. Given any parametric curve $(x(t), y(t))$ such that $\lim _{t \rightarrow t_{0}}(x(t), y(t))=(0,0)$, we have that $\lim _{t \rightarrow t_{0}} x(t)=0$.

One other way to see it is to convert to polar coordinates. We have that $x=r \cos \theta$ so that by the constant rule for limits, we conclude that

$$
\lim _{(x, y) \rightarrow(0,0)} x=\lim _{r \rightarrow 0}(r \cos \theta)=\cos \theta \cdot\left(\lim _{r \rightarrow 0} r\right)=0
$$

Limits in Several Variables

True (a.) or False (b.)

The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$ does not exist.

Limits in Several Variables

True (a.) or False (b.)

The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$ does not exist.
(a.) True.

Limits in Several Variables

True (a.) or False (b.)

The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$ does not exist.
(a.) True. By approaching $(0,0)$ from the path $y=m x$, we have that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}=\lim _{x \rightarrow 0} \frac{x}{m x}=\frac{1}{m}
$$

Limits in Several Variables

True (a.) or False (b.)

The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$ does not exist.
(a.) True. By approaching $(0,0)$ from the path $y=m x$, we have that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}=\lim _{x \rightarrow 0} \frac{x}{m x}=\frac{1}{m} .
$$

Consequently, for different choices of $m \neq 0$, we obtain a different limit.

Limits in Several Variables

- One saving grace when computing limits in several variables is that the familiar limit rules from Calculus I still hold.

Limits in Several Variables

- One saving grace when computing limits in several variables is that the familiar limit rules from Calculus I still hold.
(1) $\lim (f+g)=\lim f+\lim g$

Limits in Several Variables

- One saving grace when computing limits in several variables is that the familiar limit rules from Calculus I still hold.
(1) $\lim (f+g)=\lim f+\lim g$
(2) $\lim (C \cdot f)=C \cdot \lim f$ for all constants C

Limits in Several Variables

- One saving grace when computing limits in several variables is that the familiar limit rules from Calculus I still hold.
(1) $\lim (f+g)=\lim f+\lim g$
(2) $\lim (C \cdot f)=C \cdot \lim f$ for all constants C
(3) $\lim (f \cdot g)=(\lim f)(\lim g)$

Limits in Several Variables

- One saving grace when computing limits in several variables is that the familiar limit rules from Calculus I still hold.
(1) $\lim (f+g)=\lim f+\lim g$
(2) $\lim (C \cdot f)=C \cdot \lim f$ for all constants C
(3) $\lim (f \cdot g)=(\lim f)(\lim g)$
(9) $\lim \left(\frac{f}{g}\right)=\frac{\lim f}{\lim g}$ whenever $\lim g \neq 0$

Continuity

- Our definition of the limit inherently excludes the possibility that the pair (x, y) ever reaches the point (a, b) so that we can carry out cancellation and other useful operations in limit calculations.

Continuity

- Our definition of the limit inherently excludes the possibility that the pair (x, y) ever reaches the point (a, b) so that we can carry out cancellation and other useful operations in limit calculations.
- We say that a function $f(x, y)$ is continuous at a point (a, b) whenever $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Continuity

- Our definition of the limit inherently excludes the possibility that the pair (x, y) ever reaches the point (a, b) so that we can carry out cancellation and other useful operations in limit calculations.
- We say that a function $f(x, y)$ is continuous at a point (a, b) whenever $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$. We say that $f(x, y)$ is continuous on X whenever $f(x, y)$ is continuous for each (a, b) in X.

Continuity

- Our definition of the limit inherently excludes the possibility that the pair (x, y) ever reaches the point (a, b) so that we can carry out cancellation and other useful operations in limit calculations.
- We say that a function $f(x, y)$ is continuous at a point (a, b) whenever $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$. We say that $f(x, y)$ is continuous on X whenever $f(x, y)$ is continuous for each (a, b) in X.
- Composition of continuous functions preserves continuity.

Continuity

- Our definition of the limit inherently excludes the possibility that the pair (x, y) ever reaches the point (a, b) so that we can carry out cancellation and other useful operations in limit calculations.
- We say that a function $f(x, y)$ is continuous at a point (a, b) whenever $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$. We say that $f(x, y)$ is continuous on X whenever $f(x, y)$ is continuous for each (a, b) in X.
- Composition of continuous functions preserves continuity.
- Polynomials, rational functions, power functions, trigonometric functions, inverse trigonometric functions, exponential functions, logarithmic functions, and any composite of these are continuous.

Continuity

True (a.) or False (b.)

$f(x, y)$ is continuous at P whenever $\frac{1}{f(x, y)}$ is continuous at P.

Continuity

True (a.) or False (b.)

$f(x, y)$ is continuous at P whenever $\frac{1}{f(x, y)}$ is continuous at P.
(a.) True.

Continuity

True (a.) or False (b.)

$f(x, y)$ is continuous at P whenever $\frac{1}{f(x, y)}$ is continuous at P.
(a.) True. Compositions of continuous functions are continuous.

Continuity

True (a.) or False (b.)

$f(x, y)$ is continuous at P whenever $\frac{1}{f(x, y)}$ is continuous at P.
(a.) True. Compositions of continuous functions are continuous. Given that $\frac{1}{f(x, y)}$ is continuous at P, we have that $f(x, y)$ is continuous at P since $\frac{1}{x}$ is continuous for $x \neq 0$ and $f(x, y)=\frac{1}{x} \circ \frac{1}{f(x, y)}$.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.
- Strategy: Given an indeterminate form $\frac{0}{0}$, first check the limits along the axes.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.
- Strategy: Given an indeterminate form $\frac{0}{0}$, first check the limits along the axes. If these don't exist or are not equal, the limit doesn't exist.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.
- Strategy: Given an indeterminate form $\frac{0}{0}$, first check the limits along the axes. If these don't exist or are not equal, the limit doesn't exist.
- Strategy: Given that the limits along the axes exist and are equal but our intuition says that the limit should not exist, convert one variable into a function of the other, and check the limits again.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.
- Strategy: Given an indeterminate form $\frac{0}{0}$, first check the limits along the axes. If these don't exist or are not equal, the limit doesn't exist.
- Strategy: Given that the limits along the axes exist and are equal but our intuition says that the limit should not exist, convert one variable into a function of the other, and check the limits again. If these don't exist or are not equal, the limit doesn't exist.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.
- Strategy: Given an indeterminate form $\frac{0}{0}$, first check the limits along the axes. If these don't exist or are not equal, the limit doesn't exist.
- Strategy: Given that the limits along the axes exist and are equal but our intuition says that the limit should not exist, convert one variable into a function of the other, and check the limits again. If these don't exist or are not equal, the limit doesn't exist.
- Strategy: Given that all else has failed, convert to polar or cylindrical coordinates.

Computing Limits in Several Variables

- We outline several strategies for computing limits in several variables.
- Strategy: Given a continuous function, just plug and chug.
- Strategy: Given an indeterminate form $\frac{0}{0}$, first check the limits along the axes. If these don't exist or are not equal, the limit doesn't exist.
- Strategy: Given that the limits along the axes exist and are equal but our intuition says that the limit should not exist, convert one variable into a function of the other, and check the limits again. If these don't exist or are not equal, the limit doesn't exist.
- Strategy: Given that all else has failed, convert to polar or cylindrical coordinates. If the limit depends on the angle θ, then it does not exist; otherwise, the limit exists and equals the computed number.

Computing Limits in Several Variables

True (a.) or False (b.)

Given that $f(x, 0)=3$ for $x \neq 0$ and $f(0, y)=5$ for $y \neq 0$, we have that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=(3,5)$.

Computing Limits in Several Variables

True (a.) or False (b.)

Given that $f(x, 0)=3$ for $x \neq 0$ and $f(0, y)=5$ for $y \neq 0$, we have that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=(3,5)$.
(a.) False. Consider the piecewise function

$$
f(x, y)=\left\{\begin{array}{ll}
0, & \text { if } x=0, y=0 \\
3, & \text { if } x \neq 0, y=0 \\
5 & \text { if } x=0, y \neq 0 \\
\frac{1}{x+y} & \text { if } x \neq 0, y \neq 0
\end{array}\right. \text { and }
$$

On the path $y=x, \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} \frac{1}{2 x}$ does not exist.

Computing Limits in Several Variables

Computing Limits in Two Variables

Compute the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+y^{2}}$.
(a.) 1
(c.) $\frac{1}{3}$
(b.) DNE
(d.) $\frac{1}{4}$

Computing Limits in Several Variables

Computing Limits in Two Variables

Compute the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+y^{2}}$.
(a.) 1
(c.) $\frac{1}{3}$
(b.) DNE
(d.) $\frac{1}{4}$

We first plug and chug to find the indeterminate form $\frac{0}{0}$. We try the x and y-axes to find that the limits both exist and equal 0 . Using the path $y=m x$, however, yields $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{m x^{2}}{\left(3+m^{2}\right) x^{2}}=\frac{m}{3+m^{2}}$.

