• Like functions of a single variable, a function $f : \mathbb{R}^n \to \mathbb{R}$ in n variables is a rule that assigns to each point (x_1, \ldots, x_n) in \mathbb{R}^n one and only one value $f(x_1, \ldots, x_n)$ in \mathbb{R} .

- Like functions of a single variable, a function f : ℝⁿ → ℝ in n variables is a rule that assigns to each point (x₁,...,x_n) in ℝⁿ one and only one value f(x₁,...,x_n) in ℝ.
- For instance, we have the function $f(x, y) = x^2 + y^2$.

- Like functions of a single variable, a function f : ℝⁿ → ℝ in n variables is a rule that assigns to each point (x₁,...,x_n) in ℝⁿ one and only one value f(x₁,...,x_n) in ℝ.
- For instance, we have the function f(x, y) = x² + y². Observe that the image of ℝ² under f is the paraboloid z = x² + y².

- Like functions of a single variable, a function f : ℝⁿ → ℝ in n variables is a rule that assigns to each point (x₁,...,x_n) in ℝⁿ one and only one value f(x₁,...,x_n) in ℝ.
- For instance, we have the function f(x, y) = x² + y². Observe that the image of ℝ² under f is the paraboloid z = x² + y².
- Even more complicated, $f(x, y, z) = 3x y^3 + e^z$ is also a function.

- Like functions of a single variable, a function $f : \mathbb{R}^n \to \mathbb{R}$ in n variables is a rule that assigns to each point (x_1, \ldots, x_n) in \mathbb{R}^n one and only one value $f(x_1, \ldots, x_n)$ in \mathbb{R} .
- For instance, we have the function f(x, y) = x² + y². Observe that the image of ℝ² under f is the paraboloid z = x² + y².
- Even more complicated, $f(x, y, z) = 3x y^3 + e^z$ is also a function. Unfortunately, the image of \mathbb{R}^3 under f is a four-dimensional object, hence we cannot picture it as some familiar geometric shape.

• We say that the **domain** of a function is the set

$$D_f = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid f(x_1,\ldots,x_n) \in \mathbb{R}\}$$

of points for which the rule makes sense.

• We say that the **domain** of a function is the set

$$D_f = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid f(x_1,\ldots,x_n) \in \mathbb{R}\}$$

of points for which the rule makes sense.

 Generally, the domain of a function is not ℝⁿ. For instance, we cannot divide by 0, and we cannot take square roots of negative numbers. • We say that the **domain** of a function is the set

$$D_f = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid f(x_1,\ldots,x_n) \in \mathbb{R}\}$$

of points for which the rule makes sense.

- Generally, the domain of a function is not ℝⁿ. For instance, we cannot divide by 0, and we cannot take square roots of negative numbers.
- We say that the range (or codomain) of a function is the set

$$R_f = \{f(x_1,\ldots,x_n) \in \mathbb{R} \mid (x_1,\ldots,x_n) \in D_f\}$$

of outputs given by a function for all possible inputs.

Give the domain of the function
$$f(x, y) = \sqrt{-x^2 + 16 + y}$$
.

(a.)
$$x \ge 0$$
 and $y \ge 0$ (c.) $-4 \le x \le 4$ and $y \ge 0$

(b.) $y \ge x^2 - 16$ (d.) \mathbb{R}^2

Give the domain of the function
$$f(x, y) = \sqrt{-x^2 + 16 + y}$$
.

(a.)
$$x \ge 0$$
 and $y \ge 0$ (c.) $-4 \le x \le 4$ and $y \ge 0$

(b.) $y \ge x^2 - 16$ (d.) \mathbb{R}^2

We must have that $-x^2 + 16 + y \ge 0$ so that $y \ge x^2 - 16$.

Give the range of the function $f(x, y) = \sqrt{-x^2 + 16 + y}$.

(a.) $f(x,y) \ge 0$ (c.) \mathbb{R}

(b.) $f(x, y) \neq 0$ (d.) \mathbb{R}^2

Give the range of the function $f(x, y) = \sqrt{-x^2 + 16 + y}$.

(a.)
$$f(x, y) \ge 0$$
 (c.) \mathbb{R}

(b.)
$$f(x, y) \neq 0$$
 (d.) \mathbb{R}^2

Every non-negative real number can be obtained from this function. Explicitly, we have that $a = \sqrt{a^2} = \sqrt{-4^2 + 16 + a^2}$ for every a > 0.

• Like we did with quadric surfaces, we can identify a function in several variables by looking at its **traces**, i.e., its intersections with planes of the form $x_i = C$ for some real number C.

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its **traces**, i.e., its intersections with planes of the form $x_i = C$ for some real number C.
- For instance, the vertical traces of the function f(x, y) = x sin y are the sine curves f(C, y) = C sin y of amplitude C in the plane x = C and the lines f(x, C) = x sin C of slope sin C in the plane y = C.

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its **traces**, i.e., its intersections with planes of the form $x_i = C$ for some real number C.
- For instance, the vertical traces of the function f(x, y) = x sin y are the sine curves f(C, y) = C sin y of amplitude C in the plane x = C and the lines f(x, C) = x sin C of slope sin C in the plane y = C.
- Level curves are obtain by taking the horizontal traces of a function of several variables and projecting them into the *xy*-plane.

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its **traces**, i.e., its intersections with planes of the form $x_i = C$ for some real number C.
- For instance, the vertical traces of the function f(x, y) = x sin y are the sine curves f(C, y) = C sin y of amplitude C in the plane x = C and the lines f(x, C) = x sin C of slope sin C in the plane y = C.
- Level curves are obtain by taking the horizontal traces of a function of several variables and projecting them into the *xy*-plane.
- We have already seen that the level curves of the elliptic paraboloid $f(x, y) = x^2 + 3y^2$ are ellipses;

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its **traces**, i.e., its intersections with planes of the form $x_i = C$ for some real number C.
- For instance, the vertical traces of the function f(x, y) = x sin y are the sine curves f(C, y) = C sin y of amplitude C in the plane x = C and the lines f(x, C) = x sin C of slope sin C in the plane y = C.
- Level curves are obtain by taking the horizontal traces of a function of several variables and projecting them into the *xy*-plane.
- We have already seen that the level curves of the elliptic paraboloid $f(x, y) = x^2 + 3y^2$ are ellipses; the vertical traces are parabolas.

• We can collect all of the level curves of a function f(x, y) in a plot in the *xy*-plane called a **contour map**.

- We can collect all of the level curves of a function f(x, y) in a plot in the *xy*-plane called a **contour map**.
- For instance, the contour map of the elliptic paraboloid $x^2 + 3y^2$ consists of the ellipses $x^2 + 3y^2 = C$ for equally spaced C, e.g., C = 0, 3, 6, 9.

- We can collect all of the level curves of a function f(x, y) in a plot in the *xy*-plane called a **contour map**.
- For instance, the contour map of the elliptic paraboloid x² + 3y² consists of the ellipses x² + 3y² = C for equally spaced C, e.g., C = 0, 3, 6, 9. We refer to the constant C as the contour interval.

- We can collect all of the level curves of a function f(x, y) in a plot in the *xy*-plane called a **contour map**.
- For instance, the contour map of the elliptic paraboloid x² + 3y² consists of the ellipses x² + 3y² = C for equally spaced C, e.g., C = 0, 3, 6, 9. We refer to the constant C as the contour interval.
- **Caution:** Functions of more than two variables do not have level curves; rather, they have level surfaces.

- We can collect all of the level curves of a function f(x, y) in a plot in the *xy*-plane called a **contour map**.
- For instance, the contour map of the elliptic paraboloid x² + 3y² consists of the ellipses x² + 3y² = C for equally spaced C, e.g., C = 0, 3, 6, 9. We refer to the constant C as the contour interval.
- **Caution:** Functions of more than two variables do not have level curves; rather, they have level surfaces. One way to see this is that the points (x, y, f(x, y)) give rise to a three-dimensional object, hence the points (x, y, z, f(x, y, z)) give a four-dimensional object, and intersecting it with a plane gives a three-dimensional object.

Level Surfaces

Describe the level surfaces of the function $f(x, y, z) = x^2 + y^2 + z^2$.

(a.) elliptic parabolas

(c.) hyperbolic parabolas

(b.) hyperboloids

(d.) ellipsoids

Level Surfaces

Describe the level surfaces of the function $f(x, y, z) = x^2 + y^2 + z^2$.

- (a.) elliptic parabolas (c.) hyperbolic parabolas
- (b.) hyperboloids (d.) ellipsoids

We note that $x^2 + y^2 + z^2 = C$ gives a sphere of radius \sqrt{C} for each nonnegative real number C. Given a real number C < 0, the level curves vanish since $x^2 + y^2 + z^2 \ge 0$ for all points (x, y, z) in \mathbb{R}^3 .