Functions of Several Variables

@ Like functions of a single variable, a function f : R” = R in n
variables is a rule that assigns to each point (xi,...,x,) in R" one
and only one value f(xy,...,x,) in R.
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Functions of Several Variables

@ Like functions of a single variable, a function f : R” = R in n
variables is a rule that assigns to each point (xi,...,x,) in R" one
and only one value f(xy,...,x,) in R.

e For instance, we have the function f(x,y) = x2 + y2.

MATH 127 (Section 14.1) Functions of Several Variables The University of Kansas 1/10



Functions of Several Variables

@ Like functions of a single variable, a function f : R” = R in n
variables is a rule that assigns to each point (xi,...,x,) in R" one
and only one value f(xy,...,x,) in R.

e For instance, we have the function f(x,y) = x? + y2. Observe that
the image of R? under f is the paraboloid z = x% + y?.
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Functions of Several Variables

@ Like functions of a single variable, a function f : R” = R in n
variables is a rule that assigns to each point (xi,...,x,) in R" one
and only one value f(xy,...,x,) in R.

e For instance, we have the function f(x,y) = x? + y2. Observe that
the image of R? under f is the paraboloid z = x% + y?.

e Even more complicated, f(x,y,z) = 3x — y> + €7 is also a function.
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Functions of Several Variables

@ Like functions of a single variable, a function f : R” = R in n
variables is a rule that assigns to each point (xi,...,x,) in R" one
and only one value f(xy,...,x,) in R.

e For instance, we have the function f(x,y) = x? + y2. Observe that
the image of R? under f is the paraboloid z = x% + y?.

e Even more complicated, f(x,y,z) = 3x — y> + €7 is also a function.
Unfortunately, the image of R3 under f is a four-dimensional object,
hence we cannot picture it as some familiar geometric shape.
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Functions of Several Variables

@ We say that the domain of a function is the set
Dr ={(x1,...,xn) €R"|f(x1,...,xn) € R}

of points for which the rule makes sense.
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Functions of Several Variables

@ We say that the domain of a function is the set
Df = {(x1,...,%x0) ER"|f(x1,...,x,) € R}
of points for which the rule makes sense.

@ Generally, the domain of a function is not R”. For instance, we cannot
divide by 0, and we cannot take square roots of negative numbers.
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Functions of Several Variables

@ We say that the domain of a function is the set
Df = {(x1,...,%x0) ER"|f(x1,...,x,) € R}
of points for which the rule makes sense.

@ Generally, the domain of a function is not R”. For instance, we cannot
divide by 0, and we cannot take square roots of negative numbers.

e We say that the range (or codomain) of a function is the set
Rf = {f(Xl, e ,Xn) S ]R‘ (Xl, ce ,Xn) S Df}

of outputs given by a function for all possible inputs.
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Functions of Several Variables

Domain and Range

Give the domain of the function f(x,y) =/—x?>+16+y.

(a.) x>0andy >0 (c.) 4<x<4andy>0

(b.) y >x>—-16 (d.) R?
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Functions of Several Variables

Domain and Range

Give the domain of the function f(x,y) =/—x?>+16+y.

(a.) x>0andy >0 (c.) 4<x<4andy>0

(b.) y >x>—16 (d.) R?

We must have that —x? 416 + y > 0 so that y > x? — 16.
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Functions of Several Variables

Domain and Range

Give the range of the function f(x,y) =+/—x>+ 16+ y.

(a) f(x,y) =0 (c)R

(b.) f(x,y) #0 (d.) R2
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Functions of Several Variables

Domain and Range

Give the range of the function f(x,y) =+/—x>+ 16+ y.

(a) f(x,y) >0 (c)R
(b.) f(x,y) #0 (d.) R2

Every non-negative real number can be obtained from this function.
Explicitly, we have that a = v a2 = v/—42 + 16 + a2 for every a > 0.
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Level Curves and Traces of Functions

o Like we did with quadric surfaces, we can identify a function in
several variables by looking at its traces, i.e., its intersections with
planes of the form x; = C for some real number C.
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Level Curves and Traces of Functions

o Like we did with quadric surfaces, we can identify a function in
several variables by looking at its traces, i.e., its intersections with
planes of the form x; = C for some real number C.

e For instance, the vertical traces of the function f(x,y) = xsiny are
the sine curves f(C,y) = Csiny of amplitude C in the plane x = C
and the lines f(x, C) = xsin C of slope sin C in the plane y = C.
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Level Curves and Traces of Functions

o Like we did with quadric surfaces, we can identify a function in
several variables by looking at its traces, i.e., its intersections with
planes of the form x; = C for some real number C.

e For instance, the vertical traces of the function f(x,y) = xsiny are
the sine curves f(C,y) = Csiny of amplitude C in the plane x = C
and the lines f(x, C) = xsin C of slope sin C in the plane y = C.

@ Level curves are obtain by taking the horizontal traces of a function
of several variables and projecting them into the xy-plane.
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Level Curves and Traces of Functions

o Like we did with quadric surfaces, we can identify a function in
several variables by looking at its traces, i.e., its intersections with
planes of the form x; = C for some real number C.

e For instance, the vertical traces of the function f(x,y) = xsiny are
the sine curves f(C,y) = Csiny of amplitude C in the plane x = C
and the lines f(x, C) = xsin C of slope sin C in the plane y = C.

@ Level curves are obtain by taking the horizontal traces of a function
of several variables and projecting them into the xy-plane.

@ We have already seen that the level curves of the elliptic paraboloid
f(x,y) = x? + 3y? are ellipses;
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Level Curves and Traces of Functions

o Like we did with quadric surfaces, we can identify a function in
several variables by looking at its traces, i.e., its intersections with
planes of the form x; = C for some real number C.

e For instance, the vertical traces of the function f(x,y) = xsiny are
the sine curves f(C,y) = Csiny of amplitude C in the plane x = C
and the lines f(x, C) = xsin C of slope sin C in the plane y = C.

@ Level curves are obtain by taking the horizontal traces of a function
of several variables and projecting them into the xy-plane.

@ We have already seen that the level curves of the elliptic paraboloid
f(x,y) = x? + 3y? are ellipses; the vertical traces are parabolas.
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Level Curves and Traces of Functions

@ We can collect all of the level curves of a function f(x,y) in a plot in
the xy-plane called a contour map.
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Level Curves and Traces of Functions

@ We can collect all of the level curves of a function f(x,y) in a plot in
the xy-plane called a contour map.

e For instance, the contour map of the elliptic paraboloid x? + 3y?

consists of the ellipses x% + 3y? = C for equally spaced C, e.g.,
C=0,3,6,9.
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Level Curves and Traces of Functions

@ We can collect all of the level curves of a function f(x,y) in a plot in
the xy-plane called a contour map.

e For instance, the contour map of the elliptic paraboloid x? + 3y?
consists of the ellipses x% + 3y? = C for equally spaced C, e.g.,
C =0,3,6,9. We refer to the constant C as the contour interval.
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Level Curves and Traces of Functions

@ We can collect all of the level curves of a function f(x,y) in a plot in
the xy-plane called a contour map.

e For instance, the contour map of the elliptic paraboloid x? + 3y?
consists of the ellipses x% + 3y? = C for equally spaced C, e.g.,
C =0,3,6,9. We refer to the constant C as the contour interval.

@ Caution: Functions of more than two variables do not have level
curves; rather, they have level surfaces.
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Level Curves and Traces of Functions

@ We can collect all of the level curves of a function f(x,y) in a plot in
the xy-plane called a contour map.

e For instance, the contour map of the elliptic paraboloid x? + 3y?
consists of the ellipses x% + 3y? = C for equally spaced C, e.g.,
C =0,3,6,9. We refer to the constant C as the contour interval.

@ Caution: Functions of more than two variables do not have level
curves; rather, they have level surfaces. One way to see this is that
the points (x, y, f(x,y)) give rise to a three-dimensional object, hence
the points (x,y, z, f(x, y, z)) give a four-dimensional object, and
intersecting it with a plane gives a three-dimensional object.
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Level Curves and Traces of Functions

Level Surfaces

Describe the level surfaces of the function f(x, y,z) = x?+ y? + 22,

(a.) elliptic parabolas (c.) hyperbolic parabolas

(b.) hyperboloids (d.) ellipsoids
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Level Curves and Traces of Functions

Level Surfaces

Describe the level surfaces of the function f(x, y,z) = x?+ y? + 22,

(a.) elliptic parabolas (c.) hyperbolic parabolas

(b.) hyperboloids (d.) ellipsoids

We note that x2 4 y2 + z2 = C gives a sphere of radius /C for each
nonnegative real number C. Given a real number C < 0, the level curves
vanish since x2 + y? + z2 > 0 for all points (x, y, z) in R3,
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