
Functions of Several Variables

Like functions of a single variable, a function f : Rn → R in n
variables is a rule that assigns to each point (x1, . . . , xn) in Rn one
and only one value f (x1, . . . , xn) in R.

For instance, we have the function f (x , y) = x2 + y2. Observe that
the image of R2 under f is the paraboloid z = x2 + y2.

Even more complicated, f (x , y , z) = 3x − y3 + ez is also a function.
Unfortunately, the image of R3 under f is a four-dimensional object,
hence we cannot picture it as some familiar geometric shape.
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Functions of Several Variables

We say that the domain of a function is the set

Df = {(x1, . . . , xn) ∈ Rn | f (x1, . . . , xn) ∈ R}

of points for which the rule makes sense.

Generally, the domain of a function is not Rn. For instance, we cannot
divide by 0, and we cannot take square roots of negative numbers.

We say that the range (or codomain) of a function is the set

Rf = {f (x1, . . . , xn) ∈ R | (x1, . . . , xn) ∈ Df }

of outputs given by a function for all possible inputs.
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Functions of Several Variables

Domain and Range

Give the domain of the function f (x , y) =
√
−x2 + 16 + y .

(a.) x ≥ 0 and y ≥ 0 . (c.) −4 ≤ x ≤ 4 and y ≥ 0

(b.) y ≥ x2 − 16 . (d.) R2

We must have that −x2 + 16 + y ≥ 0 so that y ≥ x2 − 16.
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Functions of Several Variables

Domain and Range

Give the range of the function f (x , y) =
√
−x2 + 16 + y .

(a.) f (x , y) ≥ 0 RIPPPPP. (c.) R

(b.) f (x , y) 6= 0 RIPPPPP. (d.) R2

Every non-negative real number can be obtained from this function.
Explicitly, we have that a =

√
a2 =

√
−42 + 16 + a2 for every a > 0.
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Level Curves and Traces of Functions

Like we did with quadric surfaces, we can identify a function in
several variables by looking at its traces, i.e., its intersections with
planes of the form xi = C for some real number C .

For instance, the vertical traces of the function f (x , y) = x sin y are
the sine curves f (C , y) = C sin y of amplitude C in the plane x = C
and the lines f (x ,C ) = x sinC of slope sinC in the plane y = C .

Level curves are obtain by taking the horizontal traces of a function
of several variables and projecting them into the xy -plane.

We have already seen that the level curves of the elliptic paraboloid
f (x , y) = x2 + 3y2 are ellipses; the vertical traces are parabolas.
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Level Curves and Traces of Functions

We can collect all of the level curves of a function f (x , y) in a plot in
the xy -plane called a contour map.

For instance, the contour map of the elliptic paraboloid x2 + 3y2

consists of the ellipses x2 + 3y2 = C for equally spaced C , e.g.,
C = 0, 3, 6, 9. We refer to the constant C as the contour interval.

Caution: Functions of more than two variables do not have level
curves; rather, they have level surfaces. One way to see this is that
the points (x , y , f (x , y)) give rise to a three-dimensional object, hence
the points (x , y , z , f (x , y , z)) give a four-dimensional object, and
intersecting it with a plane gives a three-dimensional object.
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Level Curves and Traces of Functions

Level Surfaces
Describe the level surfaces of the function f (x , y , z) = x2+ y2+ z2.

(a.) elliptic parabolas RIPPPPP. (c.) hyperbolic parabolas

(b.) hyperboloids RIPPPPP. (d.) ellipsoids

We note that x2 + y2 + z2 = C gives a sphere of radius
√
C for each

nonnegative real number C . Given a real number C < 0, the level curves
vanish since x2 + y2 + z2 ≥ 0 for all points (x , y , z) in R3.

MATH 127 (Section 14.1) Functions of Several Variables The University of Kansas 9 / 10



Level Curves and Traces of Functions

Level Surfaces
Describe the level surfaces of the function f (x , y , z) = x2+ y2+ z2.

(a.) elliptic parabolas RIPPPPP. (c.) hyperbolic parabolas

(b.) hyperboloids RIPPPPP. (d.) ellipsoids

We note that x2 + y2 + z2 = C gives a sphere of radius
√
C for each

nonnegative real number C . Given a real number C < 0, the level curves
vanish since x2 + y2 + z2 ≥ 0 for all points (x , y , z) in R3.

MATH 127 (Section 14.1) Functions of Several Variables The University of Kansas 10 / 10


