Functions of Several Variables

- Like functions of a single variable, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in n variables is a rule that assigns to each point $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} one and only one value $f\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}.

Functions of Several Variables

- Like functions of a single variable, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in n variables is a rule that assigns to each point $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} one and only one value $f\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}.
- For instance, we have the function $f(x, y)=x^{2}+y^{2}$.

Functions of Several Variables

- Like functions of a single variable, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in n variables is a rule that assigns to each point $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} one and only one value $f\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}.
- For instance, we have the function $f(x, y)=x^{2}+y^{2}$. Observe that the image of \mathbb{R}^{2} under f is the paraboloid $z=x^{2}+y^{2}$.

Functions of Several Variables

- Like functions of a single variable, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in n variables is a rule that assigns to each point $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} one and only one value $f\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}.
- For instance, we have the function $f(x, y)=x^{2}+y^{2}$. Observe that the image of \mathbb{R}^{2} under f is the paraboloid $z=x^{2}+y^{2}$.
- Even more complicated, $f(x, y, z)=3 x-y^{3}+e^{z}$ is also a function.

Functions of Several Variables

- Like functions of a single variable, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in n variables is a rule that assigns to each point $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} one and only one value $f\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}.
- For instance, we have the function $f(x, y)=x^{2}+y^{2}$. Observe that the image of \mathbb{R}^{2} under f is the paraboloid $z=x^{2}+y^{2}$.
- Even more complicated, $f(x, y, z)=3 x-y^{3}+e^{z}$ is also a function. Unfortunately, the image of \mathbb{R}^{3} under f is a four-dimensional object, hence we cannot picture it as some familiar geometric shape.

Functions of Several Variables

- We say that the domain of a function is the set

$$
D_{f}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}\right\}
$$

of points for which the rule makes sense.

Functions of Several Variables

- We say that the domain of a function is the set

$$
D_{f}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}\right\}
$$

of points for which the rule makes sense.

- Generally, the domain of a function is not \mathbb{R}^{n}. For instance, we cannot divide by 0 , and we cannot take square roots of negative numbers.

Functions of Several Variables

- We say that the domain of a function is the set

$$
D_{f}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}\right\}
$$

of points for which the rule makes sense.

- Generally, the domain of a function is not \mathbb{R}^{n}. For instance, we cannot divide by 0 , and we cannot take square roots of negative numbers.
- We say that the range (or codomain) of a function is the set

$$
R_{f}=\left\{f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R} \mid\left(x_{1}, \ldots, x_{n}\right) \in D_{f}\right\}
$$

of outputs given by a function for all possible inputs.

Functions of Several Variables

Domain and Range

Give the domain of the function $f(x, y)=\sqrt{-x^{2}+16+y}$.
(a.) $x \geq 0$ and $y \geq 0$
(c.) $-4 \leq x \leq 4$ and $y \geq 0$
(b.) $y \geq x^{2}-16$
(d.) \mathbb{R}^{2}

Functions of Several Variables

Domain and Range

Give the domain of the function $f(x, y)=\sqrt{-x^{2}+16+y}$.
(a.) $x \geq 0$ and $y \geq 0$
(c.) $-4 \leq x \leq 4$ and $y \geq 0$
(b.) $y \geq x^{2}-16$
(d.) \mathbb{R}^{2}

We must have that $-x^{2}+16+y \geq 0$ so that $y \geq x^{2}-16$.

Functions of Several Variables

Domain and Range

Give the range of the function $f(x, y)=\sqrt{-x^{2}+16+y}$.
(a.) $f(x, y) \geq 0$
(c.) \mathbb{R}
(b.) $f(x, y) \neq 0$
(d.) \mathbb{R}^{2}

Functions of Several Variables

Domain and Range

Give the range of the function $f(x, y)=\sqrt{-x^{2}+16+y}$.
(a.) $f(x, y) \geq 0$
(c.) \mathbb{R}
(b.) $f(x, y) \neq 0$
(d.) \mathbb{R}^{2}

Every non-negative real number can be obtained from this function. Explicitly, we have that $a=\sqrt{a^{2}}=\sqrt{-4^{2}+16+a^{2}}$ for every $a>0$.

Level Curves and Traces of Functions

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its traces, i.e., its intersections with planes of the form $x_{i}=C$ for some real number C.

Level Curves and Traces of Functions

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its traces, i.e., its intersections with planes of the form $x_{i}=C$ for some real number C.
- For instance, the vertical traces of the function $f(x, y)=x \sin y$ are the sine curves $f(C, y)=C \sin y$ of amplitude C in the plane $x=C$ and the lines $f(x, C)=x \sin C$ of slope $\sin C$ in the plane $y=C$.

Level Curves and Traces of Functions

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its traces, i.e., its intersections with planes of the form $x_{i}=C$ for some real number C.
- For instance, the vertical traces of the function $f(x, y)=x \sin y$ are the sine curves $f(C, y)=C \sin y$ of amplitude C in the plane $x=C$ and the lines $f(x, C)=x \sin C$ of slope $\sin C$ in the plane $y=C$.
- Level curves are obtain by taking the horizontal traces of a function of several variables and projecting them into the $x y$-plane.

Level Curves and Traces of Functions

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its traces, i.e., its intersections with planes of the form $x_{i}=C$ for some real number C.
- For instance, the vertical traces of the function $f(x, y)=x \sin y$ are the sine curves $f(C, y)=C \sin y$ of amplitude C in the plane $x=C$ and the lines $f(x, C)=x \sin C$ of slope $\sin C$ in the plane $y=C$.
- Level curves are obtain by taking the horizontal traces of a function of several variables and projecting them into the $x y$-plane.
- We have already seen that the level curves of the elliptic paraboloid $f(x, y)=x^{2}+3 y^{2}$ are ellipses;

Level Curves and Traces of Functions

- Like we did with quadric surfaces, we can identify a function in several variables by looking at its traces, i.e., its intersections with planes of the form $x_{i}=C$ for some real number C.
- For instance, the vertical traces of the function $f(x, y)=x \sin y$ are the sine curves $f(C, y)=C \sin y$ of amplitude C in the plane $x=C$ and the lines $f(x, C)=x \sin C$ of slope $\sin C$ in the plane $y=C$.
- Level curves are obtain by taking the horizontal traces of a function of several variables and projecting them into the $x y$-plane.
- We have already seen that the level curves of the elliptic paraboloid $f(x, y)=x^{2}+3 y^{2}$ are ellipses; the vertical traces are parabolas.

Level Curves and Traces of Functions

- We can collect all of the level curves of a function $f(x, y)$ in a plot in the $x y$-plane called a contour map.

Level Curves and Traces of Functions

- We can collect all of the level curves of a function $f(x, y)$ in a plot in the $x y$-plane called a contour map.
- For instance, the contour map of the elliptic paraboloid $x^{2}+3 y^{2}$ consists of the ellipses $x^{2}+3 y^{2}=C$ for equally spaced C, e.g., $C=0,3,6,9$.

Level Curves and Traces of Functions

- We can collect all of the level curves of a function $f(x, y)$ in a plot in the $x y$-plane called a contour map.
- For instance, the contour map of the elliptic paraboloid $x^{2}+3 y^{2}$ consists of the ellipses $x^{2}+3 y^{2}=C$ for equally spaced C, e.g., $C=0,3,6,9$. We refer to the constant C as the contour interval.

Level Curves and Traces of Functions

- We can collect all of the level curves of a function $f(x, y)$ in a plot in the $x y$-plane called a contour map.
- For instance, the contour map of the elliptic paraboloid $x^{2}+3 y^{2}$ consists of the ellipses $x^{2}+3 y^{2}=C$ for equally spaced C, e.g., $C=0,3,6,9$. We refer to the constant C as the contour interval.
- Caution: Functions of more than two variables do not have level curves; rather, they have level surfaces.

Level Curves and Traces of Functions

- We can collect all of the level curves of a function $f(x, y)$ in a plot in the $x y$-plane called a contour map.
- For instance, the contour map of the elliptic paraboloid $x^{2}+3 y^{2}$ consists of the ellipses $x^{2}+3 y^{2}=C$ for equally spaced C, e.g., $C=0,3,6,9$. We refer to the constant C as the contour interval.
- Caution: Functions of more than two variables do not have level curves; rather, they have level surfaces. One way to see this is that the points $(x, y, f(x, y))$ give rise to a three-dimensional object, hence the points $(x, y, z, f(x, y, z))$ give a four-dimensional object, and intersecting it with a plane gives a three-dimensional object.

Level Curves and Traces of Functions

Level Surfaces

Describe the level surfaces of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
(a.) elliptic parabolas
(c.) hyperbolic parabolas
(b.) hyperboloids
(d.) ellipsoids

Level Curves and Traces of Functions

Level Surfaces

Describe the level surfaces of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
(a.) elliptic parabolas
(c.) hyperbolic parabolas
(b.) hyperboloids
(d.) ellipsoids

We note that $x^{2}+y^{2}+z^{2}=C$ gives a sphere of radius \sqrt{C} for each nonnegative real number C. Given a real number $C<0$, the level curves vanish since $x^{2}+y^{2}+z^{2} \geq 0$ for all points (x, y, z) in \mathbb{R}^{3}.

