Conic Sections

- Recall the usual conic sections from the Cartesian plane.

Conic Sections

- Recall the usual conic sections from the Cartesian plane.
(1) circle of radius $r: x^{2}+y^{2}=r^{2}$

Conic Sections

- Recall the usual conic sections from the Cartesian plane.
(1) circle of radius $r: x^{2}+y^{2}=r^{2}$
(2) ellipse of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$

Conic Sections

- Recall the usual conic sections from the Cartesian plane.
(1) circle of radius $r: x^{2}+y^{2}=r^{2}$
(2) ellipse of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
(3) hyperbola of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1$

Conic Sections

- Recall the usual conic sections from the Cartesian plane.
(1) circle of radius $r: x^{2}+y^{2}=r^{2}$
(2) ellipse of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
(3) hyperbola of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1$
(9) parabola: $y=a x^{2}$

Conic Sections

- Recall the usual conic sections from the Cartesian plane.
(1) circle of radius $r: x^{2}+y^{2}=r^{2}$
(2) ellipse of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
(3) hyperbola of semi-major, semi-minor axes $a, b:\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1$
(9) parabola: $y=a x^{2}$
- Considering these conic sections as three-dimensional objects by letting z vary, we obtain the family of cylinders.

Cylinders

$$
x^{2}+y^{2}=r^{2}
$$

Right-circular cylinder of radius r

Cylinders

Cylinders

$\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1$
Hyperbolic cylinder

Cylinders

Parabolic cylinder

Basics of Quadric Surfaces

- Quadric surfaces are three-dimensional generalizations of the conic sections of the (two-dimensional) Cartesian plane.

Basics of Quadric Surfaces

- Quadric surfaces are three-dimensional generalizations of the conic sections of the (two-dimensional) Cartesian plane.
- Quadric surfaces are defined by quadratic equations, e.g.,

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+a x+b y+c z+d=0
$$

Basics of Quadric Surfaces

- Quadric surfaces are three-dimensional generalizations of the conic sections of the (two-dimensional) Cartesian plane.
- Quadric surfaces are defined by quadratic equations, e.g.,

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+a x+b y+c z+d=0
$$

- Given that $D=E=F=0$, we say that a quadric surface is in standard position or of standard form.

Basics of Quadric Surfaces

- Quadric surfaces are three-dimensional generalizations of the conic sections of the (two-dimensional) Cartesian plane.
- Quadric surfaces are defined by quadratic equations, e.g.,

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+a x+b y+c z+d=0
$$

- Given that $D=E=F=0$, we say that a quadric surface is in standard position or of standard form.
- Quadric surfaces are uniquely determined by their traces, i.e., the conic sections that are obtained by intersecting a quadric surface with a plane that is parallel to one of the three coordinate planes.

Common Examples of Quadric Surfaces

- Ellipsoids are quadric surfaces whose traces are ellipses.

Common Examples of Quadric Surfaces

- Ellipsoids are quadric surfaces whose traces are ellipses.
- We can describe an ellipsoid in standard position by an equation

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

Given that $a=b=c=r$, we obtain the ellipsoid $x^{2}+y^{2}+z^{2}=r^{2}$, i.e., a sphere centered at the origin $(0,0,0)$ with radius $r>0$.

Common Examples of Quadric Surfaces

DF FIGURE 1 Ellipsoid with equation

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

Common Examples of Quadric Surfaces

- Hyperboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are hyperbolas.

Common Examples of Quadric Surfaces

- Hyperboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are hyperbolas.
- We can describe a hyperboloid in standard position by an equation

$$
\begin{align*}
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}+1 \tag{1}\\
\text { or }\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}-1 \tag{2}
\end{align*}
$$

Common Examples of Quadric Surfaces

- Hyperboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are hyperbolas.
- We can describe a hyperboloid in standard position by an equation

$$
\begin{align*}
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}+1 \tag{1}\\
\text { or }\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}-1 \tag{2}
\end{align*}
$$

Observe that the figure described by equation (2) does not contain any points such that the z-coordinate satisfies $-c<z<c$;

Common Examples of Quadric Surfaces

- Hyperboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are hyperbolas.
- We can describe a hyperboloid in standard position by an equation

$$
\begin{align*}
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}+1 \tag{1}\\
\text { or }\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}-1 \tag{2}
\end{align*}
$$

Observe that the figure described by equation (2) does not contain any points such that the z-coordinate satisfies $-c<z<c$; otherwise, the right-hand side would be negative while the left-hand side is positive by definition - a contradiction.

Common Examples of Quadric Surfaces

- Hyperboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are hyperbolas.
- We can describe a hyperboloid in standard position by an equation

$$
\begin{align*}
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}+1 \tag{1}\\
\text { or }\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} & =\left(\frac{z}{c}\right)^{2}-1 \tag{2}
\end{align*}
$$

Observe that the figure described by equation (2) does not contain any points such that the z-coordinate satisfies $-c<z<c$; otherwise, the right-hand side would be negative while the left-hand side is positive by definition - a contradiction. Consequently, the hyperboloid of equation (2) is said to have two "sheets."

Common Examples of Quadric Surfaces

(A) Hyperboloid of one sheet

(B) Hyperboloid of two sheets

Common Examples of Quadric Surfaces

- Elliptic cones are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are pairs of diagonal lines.

Common Examples of Quadric Surfaces

- Elliptic cones are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are pairs of diagonal lines.
- We can describe an elliptic cone in standard position by an equation

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\left(\frac{z}{c}\right)^{2}
$$

Common Examples of Quadric Surfaces

DF FIGURE 7 Elliptic cone

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\left(\frac{z}{c}\right)^{2}
$$

Common Examples of Quadric Surfaces

- Elliptic paraboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are upward-opening parabolas.

Common Examples of Quadric Surfaces

- Elliptic paraboloids are quadric surfaces whose $x y$-traces are ellipses and whose $y z$ - and $x z$-traces are upward-opening parabolas.
- We can describe an elliptic paraboloid in standard position by

$$
z=\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}
$$

Common Examples of Quadric Surfaces

(A) Elliptic paraboloid

$$
z=\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}
$$

FIGURE 8

Common Examples of Quadric Surfaces

- Hyperbolic paraboloids are quadric surfaces whose $x y$-traces are hyperbolas, whose $y z$-traces are downward-opening parabolas, and whose $x z$-traces are upward-opening parabolas.

Common Examples of Quadric Surfaces

- Hyperbolic paraboloids are quadric surfaces whose $x y$-traces are hyperbolas, whose $y z$-traces are downward-opening parabolas, and whose $x z$-traces are upward-opening parabolas.
- We can describe a hyperbolic paraboloid in standard position by

$$
z=\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}
$$

Common Examples of Quadric Surfaces

(B) Hyperbolic paraboloid

$$
z=\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{3}\right)^{2}
$$

Common Examples of Quadric Surfaces

True (a.) or False (b.)

Every trace of an ellipsoid is an ellipse.

Common Examples of Quadric Surfaces

True (a.) or False (b.)

Every trace of an ellipsoid is an ellipse.
(a.) True.

Common Examples of Quadric Surfaces

True (a.) or False (b.)

Every trace of a hyperboloid is a hyperbola.

Common Examples of Quadric Surfaces

True (a.) or False (b.)

Every trace of a hyperboloid is a hyperbola.
(b.) False. Both vertical traces of a hyperboloid are hyperbolas, but the horizontal trace (xy-trace) of a hyperboloid is an ellipse.

Common Examples of Quadric Surfaces

True (a.) or False (b.)

There exists a quadric surface whose horizontal and vertical traces are each parabolas.

Common Examples of Quadric Surfaces

True (a.) or False (b.)

There exists a quadric surface whose horizontal and vertical traces are each parabolas.
(b.) False.

Common Examples of Quadric Surfaces

True (a.) or False (b.)

There exists a quadric surface whose horizontal and vertical traces are each parabolas.
(b.) False. On the contrary, if it were possible, then we would have $x y$-trace $y=a_{0} x^{2}, y z$-trace $z=b_{0} y^{2}$, and $x z$-trace $x=c_{0} z^{2}$, hence

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+a x+b y+c z+d=0
$$

is not a quadratic equation - a contradiction.

Common Examples of Quadric Surfaces

Finding the Form of a Quadric Surface

Classify the quadric surface in standard position with horizontal trace given by the equation $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{4}\right)^{2}=1$ and vertical traces given by the equations $\left(\frac{y}{4}\right)^{2}+\left(\frac{z}{6}\right)^{2}=1$ and $\left(\frac{x}{2}\right)^{2}+\left(\frac{z}{6}\right)^{2}=1$.
(a.) right-circular cylinder
(c.) ellipsoid
(b.) elliptic cylinder
(d.) elliptic paraboloid

Common Examples of Quadric Surfaces

Finding the Form of a Quadric Surface

Classify the quadric surface in standard position with horizontal trace given by the equation $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{4}\right)^{2}=1$ and vertical traces given by the equations $\left(\frac{y}{4}\right)^{2}+\left(\frac{z}{6}\right)^{2}=1$ and $\left(\frac{x}{2}\right)^{2}+\left(\frac{z}{6}\right)^{2}=1$.
(a.) right-circular cylinder
(c.) ellipsoid
(b.) elliptic cylinder
(d.) elliptic paraboloid

Each of the traces is an ellipse, hence the quadric surface is an ellipsoid.

Common Examples of Quadric Surfaces

Finding the Form of a Quadric Surface

Classify the quadric surface in standard position with horizontal trace given by the equation $\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$ and vertical traces given by the equations $\left(\frac{y}{6}\right)^{2}-\left(\frac{z}{\sqrt{27}}\right)^{2}=1$ and $\left(\frac{x}{4}\right)^{2}-\left(\frac{z}{\sqrt{27}}\right)^{2}=1$.
(a.) hyperbolic cylinder
(c.) hyperboloid of two sheets
(b.) hyperbolic paraboloid
(d.) hyperboloid of one sheet

Common Examples of Quadric Surfaces

Finding the Form of a Quadric Surface

Classify the quadric surface in standard position with horizontal trace given by the equation $\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$ and vertical traces given by the equations $\left(\frac{y}{6}\right)^{2}-\left(\frac{z}{\sqrt{27}}\right)^{2}=1$ and $\left(\frac{x}{4}\right)^{2}-\left(\frac{z}{\sqrt{27}}\right)^{2}=1$.
(a.) hyperbolic cylinder
(c.) hyperboloid of two sheets
(b.) hyperbolic paraboloid
(d.) hyperboloid of one sheet

Each of the vertical traces is a hyperbola, and the horizontal trace is an ellipse, hence this is a hyperboloid; moreover, there exist points corresponding to $z=0$, from which it follows that there is one sheet.

