
Conic Sections

Recall the usual conic sections from the Cartesian plane.

1 circle of radius r : x2 + y2 = r2

2 ellipse of semi-major, semi-minor axes a, b:
(
x
a

)2
+
(
y
b

)2
= 1

3 hyperbola of semi-major, semi-minor axes a, b:
(
x
a

)2 − (
y
b

)2
= 1

4 parabola: y = ax2

Considering these conic sections as three-dimensional objects by
letting z vary, we obtain the family of cylinders.
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Cylinders
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Cylinders
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Basics of Quadric Surfaces

Quadric surfaces are three-dimensional generalizations of the conic
sections of the (two-dimensional) Cartesian plane.

Quadric surfaces are defined by quadratic equations, e.g.,

Ax2 + By2 + Cz2 + Dxy + Eyz + Fxz + ax + by + cz + d = 0.

Given that D = E = F = 0, we say that a quadric surface is in
standard position or of standard form.

Quadric surfaces are uniquely determined by their traces, i.e., the
conic sections that are obtained by intersecting a quadric surface with
a plane that is parallel to one of the three coordinate planes.
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Common Examples of Quadric Surfaces

Ellipsoids are quadric surfaces whose traces are ellipses.

We can describe an ellipsoid in standard position by an equation(
x

a

)2

+

(
y

b

)2

+

(
z

c

)2

= 1.

Given that a = b = c = r , we obtain the ellipsoid x2 + y2 + z2 = r2,
i.e., a sphere centered at the origin (0, 0, 0) with radius r > 0.
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Common Examples of Quadric Surfaces
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Common Examples of Quadric Surfaces

Hyperboloids are quadric surfaces whose xy -traces are ellipses and
whose yz- and xz-traces are hyperbolas.

We can describe a hyperboloid in standard position by an equation(
x

a

)2

+

(
y

b

)2

=

(
z

c

)2

+ 1 (1)

or

(
x

a

)2

+

(
y

b

)2

=

(
z

c

)2

− 1. (2)

Observe that the figure described by equation (2) does not contain
any points such that the z-coordinate satisfies −c < z < c ;
otherwise, the right-hand side would be negative while the left-hand
side is positive by definition — a contradiction. Consequently, the
hyperboloid of equation (2) is said to have two “sheets.”
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Common Examples of Quadric Surfaces

Elliptic cones are quadric surfaces whose xy -traces are ellipses and
whose yz- and xz-traces are pairs of diagonal lines.

We can describe an elliptic cone in standard position by an equation(
x

a

)2

+

(
y

b

)2

=

(
z

c

)2

.
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Common Examples of Quadric Surfaces

Elliptic paraboloids are quadric surfaces whose xy -traces are ellipses
and whose yz- and xz-traces are upward-opening parabolas.

We can describe an elliptic paraboloid in standard position by

z =

(
x

a

)2

+

(
y

b

)2

.
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Common Examples of Quadric Surfaces

Hyperbolic paraboloids are quadric surfaces whose xy -traces are
hyperbolas, whose yz-traces are downward-opening parabolas, and
whose xz-traces are upward-opening parabolas.

We can describe a hyperbolic paraboloid in standard position by

z =

(
x

a

)2

−
(
y

b

)2

.
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Common Examples of Quadric Surfaces

True (a.) or False (b.)
Every trace of an ellipsoid is an ellipse.

(a.) True.
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Common Examples of Quadric Surfaces

True (a.) or False (b.)
Every trace of a hyperboloid is a hyperbola.

(b.) False. Both vertical traces of a hyperboloid are hyperbolas, but the
horizontal trace (xy -trace) of a hyperboloid is an ellipse.
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Common Examples of Quadric Surfaces

True (a.) or False (b.)
There exists a quadric surface whose horizontal and vertical traces
are each parabolas.

(b.) False. On the contrary, if it were possible, then we would have
xy -trace y = a0x

2, yz-trace z = b0y
2, and xz-trace x = c0z

2, hence

Ax2 + By2 + Cz2 + Dxy + Eyz + Fxz + ax + by + cz + d = 0

is not a quadratic equation — a contradiction.
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Common Examples of Quadric Surfaces

Finding the Form of a Quadric Surface
Classify the quadric surface in standard position with horizontal
trace given by the equation

(
x
2

)2
+
( y
4

)2
= 1 and vertical traces

given by the equations
( y
4

)2
+
(
z
6

)2
= 1 and

(
x
2

)2
+
(
z
6

)2
= 1.

(a.) right-circular cylinder (c.) ellipsoid

(b.) elliptic cylinder (d.) elliptic paraboloid

Each of the traces is an ellipse, hence the quadric surface is an ellipsoid.
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Finding the Form of a Quadric Surface
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Common Examples of Quadric Surfaces

Finding the Form of a Quadric Surface
Classify the quadric surface in standard position with horizontal
trace given by the equation

(
x
4

)2
+
( y
6

)2
= 1 and vertical traces

given by the equations
( y
6

)2 − (
z√
27

)2
= 1 and

(
x
4

)2 − (
z√
27

)2
= 1.

(a.) hyperbolic cylinder (c.) hyperboloid of two sheets

(b.) hyperbolic paraboloid (d.) hyperboloid of one sheet

Each of the vertical traces is a hyperbola, and the horizontal trace is an
ellipse, hence this is a hyperboloid; moreover, there exist points
corresponding to z = 0, from which it follows that there is one sheet.
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