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Review of Limits and Continuity

Example 1. Compute the limit of f(x) = x2 as x approaches a = 1.

Solution. Computing the limit is essentially like playing a game of limbo. We are first handed a real

number ε > 0. Our challenge is then to find a real number δ > 0 such that |x2−1| < ε whenever we

assume that |x− 1| < δ. Of course, we are at liberty to take δ as small as necessary to ensure that

|x2 − 1| < ε. We may therefore assume that 0 < δ ≤ 1. Considering that x2 − 1 = (x − 1)(x + 1),

if we assume that |x − 1| < δ ≤ 1, then we must have that 0 < x < 2, from which it follows that

|x+ 1| ≤ |x|+ 1 = x+ 1 < 3 by the Triangle Inequality. Consequently, we have that

|x2 − 1| = |(x− 1)(x+ 1)| = |x− 1||x+ 1| < 3δ,

and if we wish to have that |x2 − 1| < ε, then we should choose δ = min{1, ε/3}. �

Example 1, Revisited. Compute the limit of f(x) = x2 as x approaches a = 1.

Solution. Using the graph of f(x) = x2, we find that the limit is 1. Particularly, if we trace the

graph with our left pointer finger moving from left to right toward the point x = 1, our finger stops

at y = 1. Likewise, if we trace the graph with our right pointer finger moving from right to left

toward x = 1, our finger stops at y = 1. Put in calculus language, we have that L− = 1 = L+. �

Example 2. Prove that the function f(x) = |x| is continuous for all real numbers a.

Proof. Using the definition of |x|, we have that

|x| =

{
x if x ≥ 0 and

−x if x < 0.

Consequently, it suffices to show that g(x) = x and h(x) = −x are continuous. Given real numbers

ε1, ε2 > 0, our challenge is to find real numbers δ1, δ2 > 0 such that |x−a| < ε1 whenever |x−a| < δ1
and |−x− (−a)| < ε2 whenever |x− a| < δ2. Our best bet is to choose δ1 = ε1 and δ2 = ε2.

We have shown that g(x) = x and h(x) = −x are continuous for all real numbers a, so |x| is

continuous for all nonzero real numbers. We are done as soon as we show that

lim
x→0−
|x| = 0 = lim

x→0+
|x|.

By continuity of the functions g(x) and h(x) and by definition of |x|, the left-hand limit is given by

lim
x→0−

h(x) = h(0) = 0, and the right-hand limit is given by lim
x→0+

g(x) = g(0) = 0.

Example 2, Revisited. Prove that the function f(x) = |x| is continuous for all real numbers a.

Proof. Observe that we can graph |x| without lifting our pencil, hence |x| is continuous.
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Review of Derivatives and L’Hôpital’s Rule

Example 3. Use the limit definition of the derivative to compute f ′(x) for f(x) = x2.

Solution. Our first order of business is to simplify the difference quotient Dx(h). We have that

Dx(h) =
f(x+ h)− f(x)

h
=

(x+ h)2 − x2

h
=
x2 + 2xh+ h2 − x2

h
=

2xh+ h2

h
.

By definition of the limit as h→ 0, it follows that h 6= 0, hence we conclude that

f ′(x)
def
= lim

h→0
Dx(h) = lim

h→0

2xh+ h2

h
= lim

h→0

2x+ h

1
= 2x,

where the third equals sign follows by cancelling a factor of h in the numerator and denominator. �

Example 4. Compute the limit of f(x) =
lnx

x3 − 1
as x approaches a = 1.

Solution. Considering that ln 1 = 0 and 13 − 1 = 0, it follows that

lim
x→1

f(x) =
0

0
.

By L’Hôpital’s Rule, therefore, we have that

lim
x→1

f(x) = lim
x→1

lnx

x3 − 1
L’H
= lim

x→1

1/x

3x2
= lim

x→1

1

3x3
=

1

3
. �

Example 5. Given that
d

dx
sinx = cosx, compute the limit of f(x) =

sinx

x
as x approaches a = 0.

Solution. Considering that sin 0 = 0, it follows that

lim
x→0

f(x) =
0

0
.

By L’Hôpital’s Rule, therefore, we have that

lim
x→0

f(x) = lim
x→0

sinx

x
L’H
= lim

x→0

cosx

1
= 1. �

Caution: Unfortunately, this is not a valid proof of this limit identity. In fact, this limit identity is

needed to prove that d
dx

sinx = cosx. In order to prove this identity in a rigorous and non-circular

manner, we must use tools from trigonometry and the Squeeze Theorem.

Example 6. Compute the limit of f(x) = (2x− π) secx as x approaches a =
π

2
from the left.

Solution. Considering that lim
x→π

2
−

cosx = 0 and lim
x→π

2
−
(2x− π) = 0, it follows that

lim
x→π

2
−
f(x) = lim

x→π
2
−
(2x− π) secx = lim

x→π
2
−

2x− π
cosx

=
0

0
.

By L’Hôpital’s Rule, therefore, we have that

lim
x→π

2
−
f(x) = lim

x→π
2
−
(2x− π) secx = lim

x→π
2
−

2x− π
cosx

L’H
= lim

x→π
2
−

2

− sinx
=

2

−1
= −2. �
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Example 7. Compute the limit of f(x) =
sinx

sinx+ tanx
as x approaches a = 0.

Solution. Considering that sin(0) = 0 and sin(0) + tan(0) = 0, it follows that

lim
x→0

f(x) =
0

0
.

By L’Hôpital’s Rule, therefore, we have that

lim
x→0

f(x) = lim
x→0

sinx

sinx+ tanx
L’H
= lim

x→0

cosx

cosx+ sec2 x
=

1

1 + 1
=

1

2
;

however, it is not necessary to use L’Hôpital’s Rule. By definition of the limit, we have that x 6= 0,

hence we may cancel each factor of sin x from the numerator and denominator of f(x) to obtain

f(x) =
sinx

sinx+ tanx
=

sinx

sinx(1 + sec x)
=

1

1 + sec x
.

Of course, we have that sec 0 = 1, hence the limit can be evaluated directly after simplification. �

Integration and Improper Integrals

Example 8. Prove that the function F (x) =
1

3
x3 is an antiderivative of f(x) = x2.

Proof. Observe that we have F ′(x) = 1
3
· 3x2 = x2 = f(x) by the Power Rule.

Example 9. Compute the antiderivative of f(x) =
1

x
.

Solution. We note that d
dx

lnx = 1
x

whenever x > 0 and d
dx

ln(−x) = 1
x

whenever x < 0, hence we

have that F (x) = ln|x| is an antiderivative of f(x). We conclude that
∫

1
x
dx = ln|x|+ C. �

Example 10. Compute the antiderivative of f(x) = sinx cosx.

Solution. By the Chain Rule for integration (AKA the Substitution Rule), we find that∫
sinx cosx dx =

∫
u du =

1

2
u2 + C =

1

2
(sinx)2 + C,

where we use u = sinx and the fact that du
dx

= cosx so that du = cosx dx. �

Example 11. Compute the antiderivative of f(x) = xex
2
.

Solution. By the Chain Rule for integration (AKA the Substitution Rule), we find that∫
xex

2

dx =

∫
1

2
eu du =

1

2

∫
eu du =

1

2
eu + C =

1

2
ex

2

+ C,

where we use u = x2 so that du = 2x dx and 1
2
du = x dx. �
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Example 12. Compute the (signed) area under the curve f(x) = x3 from x = 0 to x = 1.

Solution. One interpretation of the definite integral
∫ 1

0
x3 dx is as the (signed) area between x3 and

the x-axis from x = 0 to x = 1. Considering that x3 is above the x-axis from x = 0 to x = 1, this

is the (signed) area under the curve from x = 0 to x = 1. Certainly, we have that F (x) = 1
4
x4 is an

antiderivative of f(x) = x3 by the Power Rule, hence by the FToC I, we conclude that∫ 1

0

x3 dx =
1

4
x4
∣∣∣∣1
0

=
1

4
(1)4 − 1

4
(0)4 =

1

4
. �

Example 13. Compute the (signed) area between f(x) = sin x and the x-axis on
[
−π

2
, π
2

]
.

Solution. Observe that F (x) = − cosx is an antiderivative of f(x) = sin x, hence by the FToC I,∫ π/2

−π/2
sinx dx = − cosx

∣∣∣∣π/2
−π/2

= − cos(π/2) + cos(−π/2) = −0 + 0 = 0. �

Example 14. Given a differentiable function g(x), use the Fundamental Theorem of Calculus and

the Chain Rule for derivatives to prove that

d

dx

∫ g(x)

a

f(t) dt = f ′(g(x))g′(x).

Proof. By the FToC II, we have that I(x) =
∫ x
a
f(t) dt is a differentiable function with derivative

I ′(x) = f(x). Considering that g(x) is differentiable by hypothesis, we have that I(g(x)) is a

differentiable function. Once again, by the FToC II and the Chain Rule, we conclude that

d

dx

∫ g(x)

a

f(t) dt =
d

dx
I(g(x)) = I ′(g(x)) · g′(x) = f ′(g(x)) · g′(x).

Example 15. Compute the improper integral
∫∞
1
x−2 dx.

Solution. By the Power Rule, we have that F (x) = −x−1 is an antiderivative of f(x) = x−2 so that∫ ∞
1

x−2 dx = lim
b→∞

∫ b

1

x−2 = lim
b→∞

[−b−1 + (1)−1] = lim
b→∞

(
1− 1

b

)
= 1. �

Example 16. Compute the improper integral
∫ 1

−∞ e
x dx.

Solution. Considering that F (x) = ex is an antiderivative of f(x) = ex, we have that∫ 1

−∞
ex dx = lim

a→−∞

∫ 1

a

ex dx = lim
a→−∞

[e1 − ea] = e1 = e. �

Example 17. Compute the improper integral
∫∞
−∞ xe

−x2 dx.

Solution. By Example 11, we have that F (x) = −1
2
e−x

2
is an antiderivative of f(x) = xe−x

2
so that∫ ∞

−∞
xe−x

2

dx = lim
b→∞

lim
a→−∞

∫ b

a

xe−x
2

dx = lim
b→∞

lim
a→−∞

[
−1

2
e−b

2

+
1

2
e−a

2

]
= lim

b→∞
−1

2
e−b

2

= 0. �
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Example 18. Compute the improper integral
∫ 1

0
(x− 1)−1 dx.

Solution. Considering that limx→1−(x− 1)−1 = −∞, we are dealing with an improper integral with

a vertical asymptote. Using the substitution u = x − 1, we have that du = dx, u|x=1 = 0, and

u|x=0 = −1. Consequently, we have that limu→0− u
−1 = −∞. Observe that F (u) = ln(−u) is an

antiderivative of f(u) = u−1 whenever u < 0, hence we may evaluate the improper integral by∫ 1

0

(x− 1)−1 dx =

∫ 0

−1
u−1 du = lim

b→0−

∫ b

−1
u−1 du = lim

b→0−
[ln(−b)− ln(1)] = −∞.

Ultimately, we find that the improper integral does not converge. �

Example 19. Compute the improper integral
∫ 1

0
x−1/2 dx.

Solution. Considering that limx→0+ x
−1/2 = ∞, we are dealing with an improper integral with a

vertical asymptote. Observe that F (x) = 2x1/2 is an antiderivative of f(x) = x−1/2 whenever we

have that x > 0, hence we may evaluate the improper integral by∫ 1

0

x−1/2 dx = lim
a→0+

∫ 1

a

x−1/2 dx = lim
a→0+

[2(1)1/2 − 2(a)1/2] = 2. �

Example 20. Compute the improper integral
∫ 1

−1 x
−2/3 dx.

Solution. Considering that limx→0− x
−2/3 = −∞ and limx→0+ x

−2/3 = ∞, we are dealing with an

improper integral with a vertical asymptote. Observe that F (x) = 3x1/3 is an antiderivative of

f(x) = x−2/3 whenever x 6= 0, hence we may evaluate the improper integral by∫ 1

−1
x−2/3 dx =

∫ 0

−1
x−2/3 dx+

∫ 1

0

x−2/3 dx

= lim
b→0−

∫ b

−1
x−2/3 dx+ lim

a→0+

∫ 1

a

x−2/3 dx

= lim
b→0−

[3(b)1/3 − 3(−1)1/3] + lim
a→0+

[3(1)1/3 − 3(a)1/3] = 3 + 3 = 6. �

Example 21. Determine the convergence or divergence of the improper integral
∫∞
0
xex dx.

Solution. We do not yet have the tools to evaluate this improper integral directly, hence we use the

Comparison Theorem. Observe that xex ≥ ex ≥ 0 for each real number x ≥ 0. Considering that∫ ∞
0

ex dx = lim
b→∞

∫ b

0

ex dx = lim
b→∞

[eb − 1] =∞

so that
∫∞
0
ex dx diverges, it follows by the Comparison Theorem that

∫∞
0
xex dx diverges. �

Example 22. Determine the convergence or divergence of the improper integral
∫∞
0
x−2 sin2 x dx.

Solution. Unfortunately, there is not an elementary antiderivative for this function, so there is

no hope for us to find an exact value; however, we have that x−2 sin2 x is continuous on (0, 1],

hence it is enough to show that x−2 sin2 x is bounded by another function on [1,∞). Observe that

0 ≤ sin2 x ≤ 1 for all x so that 0 ≤ x−2 sin2 x ≤ x−2 for all x ≥ 1. By Example 15, we have that∫∞
1
x−2 dx = 1, hence we conclude by the Comparison Theorem that

∫∞
0
x−2 sin2 x dx converges. �
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Sequences

Example 23. Find an explicit formula an = f(n) for the infinite sequence −1, 1,−1, 1, . . . that

alternates between −1 and 1. Be sure to specify the index set N, e.g., N = {n ∈ N |n ≥ 1}.

Solution. Observe that (−1)1 = −1, (−1)2 = 1, (−1)3 = −1, and (−1)4 = 1, hence we suspect that

f(n) = (−1)n for all integers n ≥ 1. Given any positive integer k, we have that

(−1)2k = [(−1)2]k = 1k = 1 and (−1)2k+1 = (−1)(−1)2k = (−1)(1) = −1.

Our proof is complete because every integer is equal 2k or 2k + 1 for some integer k. �

Example 24. Find an explicit formula an = f(n) for the infinite sequence that starts 1, 1
2
, 1
4
, 1
8
, 1
16
,

etc. Be sure to specify the index set N, e.g., N = {n ∈ N |n ≥ 1}.

Solution. Observe that 20 = 1, 21 = 2, 22 = 4, 23 = 8, and 24 = 16, hence we conclude that

f(n) = 1
2n−1 for all integers n ≥ 1. We could also write f(n) = 1

2n
for all integers n ≥ 0. �

Example 25. Find a closed form for the sequence an = 2an−1 for each integer n ≥ 2 and a1 = 1.

Solution. We have that an = 2an−1 = 2·2an−2 = · · · = 2 · 2 · · · 2︸ ︷︷ ︸
n−1 factors

a1 = 2n−1 for each integer n ≥ 2. �

Example 26. Compute the limit of the sequence an =
1

2n
, or prove that it does not exist.

Solution. Considering that an is a subsequence of bn = 1
n
, we suspect that lim

n→∞
an = 0 = lim

n→∞
bn.

Given any real number ε > 0, if we have that n > M = log2

(
1
ε

)
, then∣∣∣∣ 1

2n

∣∣∣∣ =
1

2n
<

1

2M
=

1

2log2(1/ε)
=

1
1
ε

= ε. �

Example 27. Compute the limit of the sequence an = (−1)n, or prove that it does not exist.

Solution. Generally, the best way to determine that a sequence diverges is to find two subsequences

that converge to different limits. Using this technique, the constant subsequences a2k = (−1)2k = 1

and a2k+1 = (−1)2k+1 = −1 converge to 1 and −1, respectively, hence an is divergent. �

Certainly, we can also attack this problem with tools that we have already established.

Solution. By definition of the limit, if it were true that lim
n→∞

an = L, then there would exist a

positive real number M such that for all n > M, we would have that |(−1)n − L| < 1 so that

L − 1 < (−1)n < L + 1. But then, we would have that L − 1 < (−1)n+1 = −(−1)n < L + 1 so

that −(L + 1) < (−1)n < −(L − 1) < L − 1. Put another way, we have that (−1)n > L − 1 and

(−1)n < L− 1. Clearly, this is impossible. We conclude therefore that an diverges. �

Example 28. Compute the limit of the sequence an =
sinn

n
.
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Solution. By the previous fact, we have that

lim
n→∞

an = lim
n→∞

sinn

n
= lim

x→∞

sinx

x
= 0

by the Squeeze Theorem. Particularly, we have that −1 ≤ sinx ≤ 1 so that −1

x
≤ sinx

x
≤ 1

x
. �

Example 29. Compute the limit of the sequence an =
lnn

n
.

Solution. By the previous fact, we have that

lim
n→∞

an = lim
n→∞

lnn

n
= lim

x→∞

lnx

x
L’H
= lim

x→∞

1
x

1
= lim

x→∞

1

x
= 0. �

Example 30. Compute the limit of the sequence an =
n4 − 5n3 + 3n2 + 1

3n4 − 7n2 + n+ 1
.

Solution. By the previous fact, we have that

lim
n→∞

an = lim
n→∞

n4 − 5n3 + 3n2 + 1

3n4 − 7n2 + n+ 1
= lim

x→∞

x4 − 5x3 + 3x2 + 1

3x4 − 7x2 + x+ 1
= lim

x→∞

1− 5
x

+ 3
x2

+ 1
x4

3− 7
x2

+ 1
x3

+ 1
x4

=
1

3
. �

Example 31. Determine if the sequence an =
1

33n−2 is geometric. If so, find the constant c and the

common ratio r, and determine with justification if an converges or diverges; if not, explain why.

Solution. Observe that we can write 33n−2 = 33n · 3−2 = 1
32
· (33)n = 1

9
· 27n. Consequently, we have

that an = 9 · 1
27n

= 9 ·
(

1
27

)n
is a geometric sequence with c = 9 and r = 1

27
. Considering that

0 ≤ r < 1, it follows that an converges. �

Example 32. Determine if the sequence 6,−3, 3
2
,−3

4
, etc. is geometric. If so, find the constant c

and the common ratio r, and determine with justification its convergence; if not, explain why.

Solution. Observe that we can write a1 = 6 = −12
−2 , a2 = −3 = −12

(−2)2 , a3 = 3
2

= −12
(−2)3 , and

a4 = −3
4

= −12
(−2)4 . Consequently, we have that an = −12 · 1

(−2)n = −12 ·
(
−1

2

)n
is a geometric

sequence with c = −12 and r = −1
2
. Considering that −1 < r < 0, it follows that an converges. �

Example 33. Determine if the sequence an = ln eπ is geometric. If so, find the constant c and the

common ratio r, and determine with justification if an converges or diverges; if not, explain why.

Solution. Observe that we can write an = ln eπ = π ln e = π = π · 1n. Consequently, we have that

an is a geometric sequence with c = π and r = 1 so that an converges. �

Example 34. Prove that if lim
n→∞
|an| = 0, then lim

n→∞
an = 0.

Proof. Certainly, we have that −|an| ≤ an ≤ |an| for all integers n ≥ 1. By hypothesis, we have

that lim
n→∞

−|an| = − lim
n→∞
|an| = 0. We conclude by the Squeeze Theorem that lim

n→∞
an = 0.
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Example 35. Given any real number c 6= 0, prove that the geometric sequence an = crn satisfies

lim
n→∞

an = lim
n→∞

crn =

{
0 if r < 0 and |r| < 1 and

DNE if r ≤ −1.

Proof. Given that r < 0 and |r| < 1, it follows that lim
n→∞
|r|n = 0. By the previous fact, therefore,

we conclude that lim
n→∞

crn = 0. Given that r = −1, it follows that crn = c(−1)n oscillates between

−c and c, hence crn diverges. Given that r < −1, it follows that |r| = 1 + ε for some positive

real number ε. Considering that (1 + ε)n grows arbitrarily large, we have that |c||r|n = |crn| grows

arbitrarily large so that crn is unbounded and therefore diverges.

Example 36. Given any real number c, prove that lim
n→∞

cn

n!
= 0.

Proof. Of course, if c = 0, then this is clear because the sequence is constantly 0. Consider the case

that M ≤ c < M + 1 for some integer M ≥ 0. Consider the nth term of the sequence.

cn

n!
=

c · c · c · · · c · c · c · · · c
1 · 2 · · ·M · (M + 1) · (M + 2) · · · (n− 1) · n

=
c

1
· c

2
· c

3
· · · c

M︸ ︷︷ ︸
Call this constant R.

· c

M + 1
· c

M + 2
· · · c

n− 1︸ ︷︷ ︸
Each term here is ≤1.

· c
n
.

Consequently, we have that 0 ≤ cn

n!
≤ R · c

n
. Considering that lim

n→∞
R · c

n
= R ·c · lim

n→∞

1

n
= R ·c ·0 = 0,

we conclude that lim
n→∞

cn

n!
= 0 by the Squeeze Theorem.

Given that M ≤ c < M +1 for some integer M ≤ −1, we have that |M +1| < |c| ≤ |M |, and we

can apply a similar strategy as in the previous paragraph with these positive integers to find that

0 ≤
∣∣∣∣cnn!

∣∣∣∣ =
|c|n

n!
≤ R · |c|

n
. By the Squeeze Theorem and Exercise 34, our proof is complete.

Example 37. Compute the limit of the sequence an = sin(e−n).

Solution. Observe that an = f(bn) for the continuous function f(x) = sin x and geometric sequence

bn = e−n =
(
1
e

)n
with lim

n→∞
bn = 0. We conclude that lim

n→∞
an = sin( lim

n→∞
bn) = sin(0) = 0. �

Example 38. Determine whether the sequence an = sin

(
1

n

)
is monotone.

Solution. Observe that an = f(n) for the differentiable function f(x) = sin

(
1

x

)
. Considering that

f ′(x) = cos

(
1

x

)
· − 1

x2
< 0 for all x >

2

π
,

we conclude that an is decreasing for n ≥ 1, hence an is monotone for all n ≥ 1. �

Example 39. Determine whether the sequence an = −ne−n2
is monotone.
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Solution. Observe that an = f(n) for the differentiable function f(x) = −xe−x2 . Considering that

f ′(x) = −e−x2 − xe−x2 · −2x = −e−x2 + 2x2e−x
2

= e−x
2

(2x2 − 1) > 0 for all x >

√
2

2
,

we conclude that an is increasing for n ≥ 1, hence an is monotone for all n ≥ 1. �

Example 40. Determine whether the sequence an = cos(πn) is monotone.

Solution. Observe that an = f(n) for the differentiable function f(x) = cos(πx). Considering that

f ′(x) = −π sinx takes positive and negative values for infinitely many x, an is not monotone. �

Example 41. Determine whether the sequence an = sin

(
1

n

)
converges. If so, find the limit.

Solution. Considering that sinx is a continuous function, we can easily evaluate the limit:

lim
n→∞

an = lim
n→∞

sin

(
1

n

)
= sin

(
lim
n→∞

1

n

)
= sin(0) = 0. �

We could also have employed the Monotone Convergence Theorem to guarantee convergence.

Solution. Observe that −1 ≤ an ≤ 1, hence an is bounded. By Example 38, we have that an is

monotone (decreasing) for all n ≥ 1, hence an converges by the Monotone Convergence Theorem. �

Example 42. Determine whether the sequence an = −ne−n2
converges. If so, find the limit.

Solution. Considering that an = f(n) for the function f(x) = −xe−x2 , we have that

lim
n→∞

an = lim
x→∞

f(x) = − lim
x→∞

x

ex2
L’H
= − lim

x→∞

1

2xex2
= 0. �

We could also have employed the Monotone Convergence Theorem to guarantee convergence.

Solution. By Example 39, we have that an is monotone (increasing) for all n ≥ 1. Consequently, we

have that a1 = −e−1 is a lower bound for an. On the other hand, we have that an < 0 for all n ≥ 1,

hence an is bounded. We conclude by the Monotone Convergence Theorem that an converges. �

Example 43. Determine whether the sequence an = cos(πn) converges. If so, find the limit.

Solution. Considering the graph of cos(πx), we suspect that an diverges. We will prove this by

establishing two convergent subsequences of an with different limits. Observe that cos(2nπ) = 1 and

cos((2n+1)π) = −1 for all integers n ≥ 1, hence we have that lim
n→∞

a2n = 1 and lim
n→∞

a2n+1 = −1. �
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Basics of Infinite Series

Example 44. Find the first five partial sums of the infinite series
∞∑
k=1

1

k
.

Solution. We compute each partial sum in turn.

a1 =
1∑

k=1

1

k
=

1

1
= 1

a2 =
2∑

k=1

1

k
=

1

1
+

1

2
= 1 +

1

2
=

3

2

a3 =
3∑

k=1

1

k
=

1

1
+

1

2
+

1

3
=

6 + 3 + 2

6
=

11

6

a4 =
4∑

k=1

1

k
=

1

1
+

1

2
+

1

3
+

1

4
=

12 + 6 + 4 + 3

12
=

25

12

a5 =
5∑

k=1

1

k
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
=

60 + 30 + 20 + 15 + 12

60
=

137

60

�

Example 45. Find an explicit formula for the partial sums of the infinite series
∞∑
k=1

1

2k
; then,

determine whether the infinite series converges. If so, find the value of the infinite series.

Solution. Observe that the nth partial sum of
∑∞

k=1
1
2k

is given by

sn =
n∑
k=1

1

2k
=

1

2
+

1

22
+ · · ·+ 1

2n
=

2n−1 + 2n−2 + · · ·+ 1

2n
=

2n − 1

2n
= 1− 1

2n
.

Considering that sn = 1 − 1
2n

is the difference of a constant sequence and a convergent geometric

sequence, we conclude that sn converges, hence the infinite series converges with value

∞∑
k=1

1

2k
= lim

n→∞

n∑
k=1

1

2k
= lim

n→∞
sn = lim

n→∞

(
1− 1

2n

)
= 1. �

Example 46. Determine if the infinite series
∞∑
k=1

(
1

2k
− 1

2k + 2

)
converges. If so, find its value.

10



Solution. Observe that the nth partial sum of the infinite series is given by

sn =
n∑
k=1

(
1

2k
− 1

2k + 2

)
=

1

2
− 1

4
+

1

4
− 1

6
+

1

6
− 1

8
+ · · ·+ 1

2n+ 2
.

Consequently, each of the negative summands cancels with the subsequent positive summand, and

we find that this infinite series is telescoping with c = 1
2

and f(n) = − 1
2n+2

. We conclude that

∞∑
k=1

(
1

2k
− 1

2k + 2

)
= lim

n→∞

n∑
k=1

(
1

2k
− 1

2k + 2

)
= lim

n→∞
sn = lim

n→∞

(
1

2
− 1

2n+ 2

)
=

1

2
. �

Example 47. Determine if the infinite series
∞∑
n=1

(ln eπ)n converges. If so, find its value.

Solution. Considering that ln eπ = π ln e = π > 1, the sum diverges. �

Example 48. Determine if the infinite series
∞∑
n=1

n!

10n
converges. If so, find its value.

Solution. By Example 36, we have that

lim
n→∞

n!

10n
= lim

n→∞

1
10n

n!

=∞ 6= 0,

hence the series diverges by the Divergence Test. �

Example 49. Determine if the infinite series
∞∑
n=7

n3 + n2 + n+ 1

n3 − n2 + n− 1
converges. If so, find its value.

Solution. Observe that

lim
n→∞

n3 + n2 + n+ 1

n3 − n2 + n− 1
= lim

n→∞

n3
(
1 + 1

n
+ 1

n2 + 1
n3

)
n3
(
1− 1

n
+ 1

n2 − 1
n3

) = lim
n→∞

1 + 1
n

+ 1
n2 + 1

n3

1− 1
n

+ 1
n2 − 1

n3

= 1 6= 0,

hence the series diverges by the Divergence Test. �

Caution. Often, upon first learning the Divergence Theorem, students get mixed up in the logic

of what exactly the theorem guarantees. Put explicitly, the theorem says that

1.) if the limit of the sequence an of terms of the series does not converge to 0, then it is impossible

for the series
∑
an to converge, and

2.) if the series
∑
an converges, then the sequence an of terms of the series must converge to 0.

Consequently, we are able to decipher when a series diverges by the Divergence Test — hence the

name; however, the drawback is that we cannot tell that a series converges by the Divergence Test.

Example 50. Prove that an =
1√
n

satisfies lim
n→∞

an = 0; then, prove that
∑
an diverges.

11



Solution. Observe that

lim
n→∞

1√
n

= lim
x→∞

1√
x

= 0.

Considering that
√
n is an increasing function, it follows that

sn =
n∑
k=1

1√
k

= 1 +
1√
2

+ · · ·+ 1√
n
>

1√
n

+
1√
n

+ · · ·+ 1√
n︸ ︷︷ ︸

n summands

=
n√
n

=
√
n.

Consequently, we have that
∑
an = lim

n→∞
sn > lim

n→∞

√
n =∞, and

∑
an diverges. �

Convergence Tests for Series

Example 51. Use the Integral Test to prove that
∞∑
n=m

1

n
diverges for any positive integer m.

Proof. Consider the function f(x) = 1
x
. Given a positive integer m, we have that f(x) > 0 for all

x ≥ m, so f(x) is positive. Observe that f ′(x) = − 1
x2
< 0, hence f(x) is decreasing for all real

numbers x 6= 0. Last, f(x) is the quotient of a continuous function by a continuous function, hence

f(x) is continuous. Consequently, we may use the Integral Test. We have that∫ ∞
m

1

x
dx = lim

b→∞

∫ b

m

1

x
dx = lim

b→∞
ln|x|

∣∣∣∣b
m

= lim
b→∞

[ln(b)− ln(m)] =∞.

Considering that
∫∞
m

1
x
dx diverges, it follows that

∑∞
n=m

1
n

diverges by the Integral Test.

Example 52. Use the Integral Test to determine the convergence of
∞∑
n=m

1

1 + n2
.

Solution. Consider the function f(x) = 1
1+x2

. Given a positive integer m, we have that f(x) > 0

for all x ≥ m, so f(x) is positive. Observe that f ′(x) = − 2x
(1+x2)2

< 0 for all x > 0, hence f(x)

is decreasing for all x > 0. Last, f(x) is the quotient of a continuous function by a continuous

function, hence f(x) is continuous. Consequently, we may use the Integral Test. We have that∫ ∞
m

1

1 + x2
dx = lim

b→∞

∫ b

m

1

1 + x2
dx = lim

b→∞
arctanx

∣∣∣∣b
m

= lim
b→∞

[arctan(b)−arctan(m)] =
π

4
−arctan(m).

Considering that
∫∞
m

1
1+x2

dx converges, it follows that
∑∞

n=m
1

1+n2 converges by the Integral Test. �

Example 53. Use the p-Series Test to determine the convergence of
∞∑
n=m

1
5
√
n7
.

Solution. Observe that
5
√
n7 = n7/5. Considering that 7

5
> 1, this series converges. �

Example 54. Use the p-Series Test to determine the convergence of
∞∑
n=m

1
7
√
n5
.
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Solution. Observe that
7
√
n5 = n5/7. Considering that 5

7
≤ 1, this series diverges. �

Example 55. Use the Direct Comparison Test to determine the convergence of
∞∑
n=0

n2

1 + n5
.

Solution. Considering the exponents in the numerator and denominator, we suspect that the series

converges: it will (eventually) behave like the convergent p-series 1
n3 because for sufficiently large

n, we have that 1 + n5 ≈ n5 so that n2

1+n5 ≈ n2

n5 = 1
n3 . We proceed as follows.

n5 ≤ 1 + n5 =⇒ 1

n5
≥ 1

1 + n5
=⇒ 1

n3
=
n2

n5
≥ n2

1 + n5

Considering that 0 ≤ n2

1+n5 ≤ 1
n3 for all integer n ≥ 1, the series converges by Direct Comparison. �

Example 56. Use the Direct Comparison Test to determine the convergence of
∞∑
n=0

1
7
√
n5 + 1

.

Solution. We will establish that there exists a real number M with 0 ≤ 1
n
≤ 1

7√n5+1
for all integers

n > M. Observe that this is equivalent to showing that n ≥ 7
√
n5 + 1 or n7−n5−1 ≥ 0. Considering

that lim
n→∞

(n7 − n5 − 1) = ∞ (look at the end behavior of its graph), it follows that there exists a

real number M sufficiently large such that n7−n5−1 ≥ 0 for all integers n > M. We have therefore

established that 0 ≤ 1
n
≤ 1

7√n5+1
, hence the series diverges by the Direct Comparison Test. �

Example 57. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

1
7
√
n5 + 1

.

Solution. Our initial urge is to use the Direct Comparison Test with an = 1
7√
n5

= 1
n5/7 ; however,

7
√
n5 ≤ 7

√
n5 + 1 =⇒ 1

7
√
n5
≥ 1

7
√
n5 + 1

,

hence the inequality is going the wrong direction, and the Direct Comparison Test fails with this

an. We have seen in Example 56 that we can directly compare with an = 1
n
, but we can salvage our

original idea and use the Limit Comparison Test with bn = 1
7√
n5

to obtain something fruitful.

lim
n→∞

1
7√n5+1

1
7√
n5

= lim
n→∞

7
√
n5

7
√
n5 + 1

= lim
n→∞

7

√
n5

n5 + 1
=

7

√
lim
n→∞

n5

n5 + 1
= 7

√
lim
n→∞

1

1 + 1
n5

= 1

By the Limit Comparison Test, the series in question converges if and only if the p-series with

p = 5
7
≤ 1 converges. Considering that this p-series diverges, the series in question diverges. �

Example 58. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

n3 − n2 + n− 1

n4 − n3 + n2 − n+ 1
.

Solution. Considering the end behavior of the polynomials in the numerator and denominator, we

have that n3 − n2 + n − 1 ≈ n3 and n4 − n3 + n2 − n + 1 ≈ n4 for sufficiently large n, hence the

terms of the series eventually behave like n3

n4 = 1
n
. Put another way, we have that

lim
n→∞

n3−n2+n−1
n4−n3+n2−n+1

1
n

= lim
n→∞

n4 − n3 + n2 − n
n4 − n3 + n2 − n+ 1

= lim
n→∞

1− 1
n

+ 1
n2 − 1

n3

1− 1
n

+ 1
n2 − 1

n3 + 1
n4

= 1.

By the Limit Comparison Test, the series in question converges if and only if the p-series with

p = 1 ≤ 1 converges. Considering that this p-series diverges, the series in question diverges. �
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Absolute and Conditional Convergence

Example 59. Determine if the series
∞∑
n=1

(−1)nn−π is absolutely convergent.

Solution. Considering that |(−1)nn−π| = n−π = 1
nπ

gives rise to a convergent p-series (p = π > 1),

we conclude that the series converges absolutely. �

Example 60. Determine if the series
∞∑
n=1

(−1)nn−2 converges.

Solution. Considering that |(−1)nn−2| = n−2 = 1
n2 gives rise to a convergent p-series (p = 2 > 1),

we conclude that the series converges absolutely. By the above fact, the series converges. �

Example 61. Prove that the alternating harmonic series
∞∑
n=1

(−1)n
1

n
converges.

Solution. Observe that the sequence bn = 1
n

is positive for all n ≥ 1. Further, we have that n+1 ≥ n

so that 1
n+1
≤ 1

n
, hence bn is decreasing. Considering that lim

n→∞
1
n

= 0, we conclude that the

alternating harmonic series converges by the Alternating Series Test. �

Example 62. Determine all values of p such that the alternating p-series
∞∑
n=1

(−1)n
1

np
converges.

Explain how this differs from the case of the non-alternating p-series
∞∑
n=1

1

np
.

Solution. We note that if p = 0, then (−1)n 1
np

= (−1)n, and the series
∑∞

n=1(−1)n diverges because

its sequence of partial sums s2k+1 = −1 and s2k = 0 oscillates. Likewise, if p < 0, then we have that

−p > 0 so that (−1)n 1
np

= (−1)nn−p grows arbitrarily large in absolute value. By the Divergence

Test, therefore, the series
∑∞

n=1(−1)nn−p diverges. On the other hand, if p > 0, then

d

dx

1

xp
= − p

xp+1
< 0

for all x > 0, hence bn = 1
np

is positive and decreasing. Considering that lim
n→∞

1
np

= 0 for all p > 0,

we conclude by the Alternating Series Test that
∑∞

n=1(−1)n 1
np

converges for p > 0.

We note that the non-alternating p-series
∑∞

n=1
1
np

converges if and only if p > 1, so the alter-

nating p-series converge for all positive p-values, and both diverge for all negative p-values. �

The Ratio Test

Example 63. Use the Ratio Test to determine if the series
∞∑
n=0

en

n!
converges.
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Solution. We have that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1 ·
1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ en+1

(n+ 1)!
· n!

en

∣∣∣∣ = lim
n→∞

en+1

en
· n!

(n+ 1)n!
= lim

n→∞

e

n+ 1
= 0 < 1.

By the Ratio Test, we conclude that
∑∞

n=0
en

n!
converges absolutely, hence it converges. �

Example 64. Use the Ratio Test to determine if the series
∞∑
n=1

nn

(n2)!
converges.

Solution. We have that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1 ·
1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)n+1

((n+ 1)2)!
· (n2)!

nn

∣∣∣∣
= lim

n→∞

(n+ 1)n+1

nn
· (n2)!

((n+ 1)2)!

= lim
n→∞

(n+ 1)(n+ 1)n

nn
· (n2)!

(n2 + n+ 1)!

= lim
n→∞

(n+ 1)

(
n+ 1

n

)n
· (n2)!

(n2 + n+ 1)(n2 + n) · · · (n2 + 1)(n2)!

= lim
n→∞

(
1 +

1

n

)n
· n+ 1

(n2 + n+ 1)(n2 + n) · · · (n2 + 1)

= lim
n→∞

(
1 +

1

n

)n
· lim
n→∞

n+ 1

(n2 + n+ 1)(n2 + n) · · · (n2 + 1)

= e · 0 = 0.

By the Ratio Test, we conclude that
∑∞

n=0
nn

(n2)!
converges absolutely, hence it converges. �

Power Series and Taylor Series

Example 65. Prove that the power series
∞∑
k=0

kxk converges for x = 1
2

and diverges for x = 1.

Solution. Observe that the series
∑∞

k=0 k
(
1
2

)k
converges absolutely by the Ratio Test:

lim
k→∞

∣∣∣∣(k + 1)
(
1
2

)k+1

k
(
1
2

)k ∣∣∣∣ =
1

2
· lim
k→∞

k + 1

k
L’H
=

1

2
· lim
k→∞

1

1
=

1

2
< 1.

On the other hand, for x = 1, we have that
∑∞

k=0 k diverges by the Divergence Test as lim
k→∞

k 6= 0. �
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Example 66. Find the radius and interval of convergence of the power series
∞∑
n=0

xn

n!
.

Solution. We proceed by the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1 ·
1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣xn+1

xn
· n!

(n+ 1)!

∣∣∣∣ (Group like terms.)

= |x| lim
n→∞

n!

(n+ 1)!
(Cancel, and pull out constants.)

= |x| lim
n→∞

n!

(n+ 1)n!
(Write n! as a factor of (n+ 1)!.)

= |x| lim
n→∞

1

n+ 1
(Cancel common factors.)

= 0.

We conclude that regardless of the value of x, the power series in question converges. Consequently,

the radius of convergence is R =∞ and the interval of convergence is I = (−∞,∞). �

Example 67. Find the radius and interval of convergence of the power series
∞∑
n=0

(−1)n(x− 3)n

3n
.

Solution. Observe that we can view this power series as a geometric series with common ratio

r =
x− 3

−3
.

We conclude by the Geometric Series Test that the power series converges if and only if |r| < 1.

Consequently, the radius of convergence is R = 3 and the interval of convergence is I = (0, 6)). �

Example 68. Find the radius and interval of convergence of the power series
∞∑
n=0

nnxn.

Solution. We proceed by the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)n+1xn+1

nnxn

∣∣∣∣ = |x| lim
n→∞

(n+ 1)(n+ 1)n

nn

= |x| lim
n→∞

(n+ 1)

(
1 +

1

n

)n

= |x| lim
n→∞

(n+ 1) · lim
n→∞

(
1 +

1

n

)n
=∞.
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We conclude that the power series diverges for all x 6= 0, i.e., R = 0 and I = {0}. �

Example 69. Use the geometric series to find a power series identity for the following functions;

then, state the radius and interval of convergence for each power series.

(a.)
1

1− x

(b.)
1

1 + x

(c.)
1

1 + x2

Solution. (a.) Observe that for all real numbers x such that |x| < 1, this is the sum of a convergent

geometric series with c = 1 and r = x. Consequently, we have that

1

1− x
=
∞∑
n=0

xn.

By the Geometric Series Test, this series diverges whenever |x| ≥ 1, hence the radius of convergence

is R = 1 and the interval of convergence is I = (−1, 1). �

Solution. (b.) Observe that for all real numbers x such that |x| = |−x| < 1, this is the sum of a

convergent geometric series with c = 1 and r = −x. Consequently, we have that

1

1 + x
=

1

1− (−x)
=
∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn.

By the Geometric Series Test, this series diverges whenever |−x| = |x| ≥ 1, hence the radius of

convergence is R = 1 and the interval of convergence is I = (−1, 1). �

Solution. (c.) Observe that for all real numbers x such that |−x2| < 1, this is the sum of a

convergent geometric series with c = 1 and r = −x2. Consequently, we have that

1

1 + x2
=
∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n.

By the Geometric Series Test, this series diverges whenever x2 = |−x2| ≥ 1, hence the radius of

convergence is R = 1 and the interval of convergence is I = (−1, 1). �

Example 70. Use Example 69 to find a power series identity for the following functions; then,

state the radius and interval of convergence for each power series.

(a.)
1

(1− x)2

(b.) ln|1 + x|

(c.) arctan x
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Solution. (a.) Observe that

d

dx

1

1− x
=

d

dx
(1− x)−1 = −1(1− x)−2(−1) = (1− x)−2 =

1

(1− x)2
.

Using Example 69(a.) above, it follows that

1

(1− x)2
=

d

dx

1

1− x
=

d

dx

∞∑
n=0

xn =
∞∑
n=0

d

dx
xn =

∞∑
n=1

nxn−1.

We do not change the radius or interval of convergence when differentiating power series, hence we

have that the radius of convergence is R = 1 and the interval of convergence is I = (−1, 1). �

Solution. (b.) Observe that

ln|1 + x| =
∫

1

1 + x
dx.

Using Example 69(b.) above, it follows that

ln|1 + x|+ C =

∫
1

1 + x
dx =

∫ ∞∑
n=0

(−1)nxn dx =
∞∑
n=0

(−1)n
∫
xn dx =

∞∑
n=0

(−1)nxn+1

n+ 1
.

By plugging in x = 0 and using the fact that ln(1) = 0, it follows that C = 0. We do not change

the radius or interval of convergence when antidifferentiating power series, hence we have that the

radius of convergence is R = 1 and the interval of convergence is I = (−1, 1). �

Solution. (c.) Observe that

arctanx =

∫
1

1 + x2
dx.

Using Example 69(c.) above, it follows that

arctanx =

∫
1

1 + x2
dx =

∫ ∞∑
n=0

(−1)nx2n dx =
∞∑
n=0

(−1)n
∫
x2n dx =

∞∑
n=0

(−1)nx2n+1

2n+ 1
.

By plugging in x = 0 and using the fact that arctan(0) = 0, it follows that C = 0. We do not change

the radius or interval of convergence when antidifferentiating power series, hence we have that the

radius of convergence is R = 1 and the interval of convergence is I = (−1, 1). �

Example 71. Prove that Tn(x) is an nth-order approximation of f(x) at x = c.

Solution. By definition, we must show that Tn(c) = f(c), T ′n(c) = f ′(c), T ′′n (c) = f ′′(c), and in

general, the kth derivative of Tn(x) evaluated at x = c is equal to kth derivative of f(x) evaluated

at x = c for all integers 0 ≤ k ≤ n. Explicitly, we must show that

dk

dxk
Tn(x)

∣∣∣∣
x=c

=
dk

dxk
f(x)

∣∣∣∣
x=c

18



for all integers 0 ≤ k ≤ n. Observe that we have that

d

dx
Tn(x) = f ′(c) +

f ′′(c)

2!
· 2(x− c) +

f ′′′(c)

3!
· 3(x− c)2 + · · ·+ f (n)(c)

n!
· n(x− c)n−1

= f ′(c) + f ′′(c)(x− c) +
f ′′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

(n− 1)!
(x− c)n−1,

d2

d2x
Tn(x) = f ′′(c) +

f ′′′(c)

2!
· 2(x− c) + · · ·+ f (n)(c)

(n− 1)!
· (n− 1)(x− c)n−2

= f ′′(c) + f ′′′(c)(x− c) + · · ·+ f (n)(c)

(n− 2)!
(x− c)n−2,

and in general, for all integers 0 ≤ k ≤ n, we have that

dk

dkx
Tn(x) = f (k)(c) + f (k+1)(c)(x− c) + · · ·+ f (n)(c)

(n− k)!
(x− c)n−k,

from which it follows that
dk

dxk
Tn(x)

∣∣∣∣
x=c

= f (k)(c) =
dk

dxk
f(x)

∣∣∣∣
x=c

as desired. �

Example 72. Give a closed form for the sequence an = f (n)(x) of derivatives of f(x) = ex. Use

this to find the nth Taylor polynomial Tn(x) of ex centered at x = 0.

Solution. Observe that d
dx
ex = ex so that dn

dnx
ex = ex for all integers n ≥ 0. We have therefore that

an = f (n)(x) = ex so that f (n)(0) = 1 for each integer n ≥ 0. Our Taylor polynomial is therefore

Tn(x) =
n∑
k=0

f (k)(0)

k!
(x− 0)k =

n∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+ · · ·+ xn

n!
. �

Example 73. Give a closed form for the sequence an = f (n)(x) of derivatives of f(x) = cos x. Use

this to find the nth Taylor polynomial Tn(x) of cosx centered at x = 0.

Solution. Observe that we have that

f ′(x) = − sinx,

f ′′(x) = − cosx,

f ′′′(x) = sinx, and

f (4)(x) = cos x = f(x).

Consequently, our sequence of derivatives is given by

f (4k)(x) = cos x,

f (4k+1)(x) = − sinx,

f (4k+2)(x) = − cosx, and

f (4k+3)(x) = sinx
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for all integers k ≥ 0, from which it follows that

Tn(x) =
n∑
k=0

f (k)(0)

k!
(x− 0)k = 1 + 0 · x+

−1

2!
x2 +

0

3!
x3 +

1

4!
x4 +

0

5!
x5 +

−1

6!
x6 +

0

7!
x7 + · · ·

= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · · =

(n−1)/2∑
k=0

(−1)kx2k

(2k)!
. �

Example 74. Use the Error Bound Theorem to find the maximum error in approximating e2 with

f(x) = ex and the fourth Taylor polynomial T4(x) centered at x = 0.

Solution. We will use the Error Bound Theorem with c = 0, x = 2, and n = 4. Considering that

f (n)(x) = ex for all integers n ≥ 0, it follows that f (5)(x) exists and is continuous. Further, we have

that f (5)(x) = ex is increasing so that |f (5)(u)| ≤ e2 = f (5)(2) = max{f (5)(u) | 0 ≤ u ≤ 2}. By the

Error Bound Theorem, it follows that the maximum error in approximating e2 with f(x) = ex and

the fourth Taylor polynomial T4(x) centered at x = 0 is given by

K · |x− c|
n+1

(n+ 1)!
= e2 · |2− 0|5

5!
=

32e2

120
. �

Example 75. Use the Error Bound Theorem to find an integer n ≥ 0 such that

|cos(1)− Tn(1)| ≤ 1

1000
.

Solution. Considering that all the derivatives of f(x) = cos x are differentiable (and hence continu-

ous), it follows that we may invoke the Error Bound Theorem. Explicitly, recall that the derivatives

of cosx are± sinx and± cosx, hence we have that |f (n)(x)| ≤ 1 since |± sinx| ≤ 1 and |± cosx| ≤ 1.

By Example 73, we may use the nth Taylor polynomial of cosx centered at c = 0. By the Error

Bound Theorem with x = 1, c = 0, and K = 0, we have that

1 · 1

(n+ 1)!
= K · |1− 0|n+1

(n+ 1)!
≤ 1

1000
⇐⇒ 1000 ≤ (n+ 1)!.

Considering that 1000 ≤ 7! = 5040 and 1000 > 6! = 840, we may take n = 6. �

Example 76. Use Example 72 to find the Maclaurin series for f(x) = ex.

Solution. By Example 72, the Taylor polynomial for ex centered at x = 0 is given by

Tn(x) =
n∑
k=0

xk

k!
,

from which it follows that the Maclaurin series for ex is given by

T (x) =
∞∑
k=0

xk

k!
. �
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Example 77. Use Example 73 to find the Maclaurin series for f(x) = cos x.

Solution. By Example 73, the Taylor polynomial for cosx centered at x = 0 is given by

Tn(x) =

(n−1)/2∑
k=0

(−1)kx2k

(2k)!
,

from which it follows that the Maclaurin series for cos x is given by

T (x) =
∞∑
k=0

(−1)kx2k

(2k)!
. �

Example 78. Use Example 77 to find the Maclaurin series for f(x) = sinx.

Solution. By Example 77, the Maclaurin series for cosx is given by

t(x) =
∞∑
k=0

(−1)kx2k

(2k)!
.

Considering that cosx = d
dx

sinx, we can simply integrate the Maclaurin series for cos x to obtain

the Maclaurin series for sin x. Consequently, we have that

T (x) + C =

∫
t(x) dx =

∫ ∞∑
k=0

(−1)kx2k

(2k)!
=
∞∑
k=0

(−1)k

(2k)!

∫
x2k dx =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

By plugging in x = 0, we find that T (0) + C = 0. Using the fact that T (0) = sin(0) = 0 by

construction, we conclude that C = 0 so that the Maclaurin series for sinx is given by

T (x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
. �

Example 79. Use Examples 76, 77, and 78 in addition to the above fact to find the power series

expansions of ex, cosx, and sinx. Determine the radius and interval of convergence for each of these.

Solution. Given a real number R, by the previous examples, we have that

ex =
∞∑
n=0

xn

n!
,

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
, and

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

since each of these functions is continuously differentiable for each integer n ≥ 0 on any open

interval (−R,R). By the Ratio Test, each of these converges for all real numbers x:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣ = |x| · lim
n→∞

n!

(n+ 1)n!
= |x| · lim

n→∞

1

n+ 1
= 0,

hence the power series expansion for ex converges for all x (and similarly for cosx and sin x). �
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Example 80. Use Example 79 to find the Taylor series of the following; then, state their centers.

(a.) f(x) = x3 cosx

(b.) g(x) = e1−x
2

(c.) h(x) = ex−4

(d.) k(x) =
x− sinx

x

Solution. (a.) By Example 79, we have that

x3 cosx = x3
∞∑
n=0

(−1)nx2n

(2n)!
=
∞∑
n=0

(−1)nx2n+3

(2n)!

is the power series expansion of x3 cosx centered at c = 0. �

Solution. (b.) By Example 79, we have that

e1−x
2

= e · e−x2 = e
∞∑
n=0

(−x2)n

n!
=
∞∑
n=0

(−1)nex2n

n!

is the power series expansion of e1−x
2

centered at c = 0. �

Solution. (c.) By Example 79, we have that

ex−4 =
ex

e4
=

1

e4

∞∑
n=0

xn

n!
=
∞∑
n=0

xn

e4n!

is the power series expansion of ex−4 centered at c = 0. We could have also found that

ex−4 =
∞∑
n=0

(x− 4)n

n!

is the power series expansion of ex−4 centered at c = 4. �

Solution. (d.) By Example 79, we have that

x− sinx = x−
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x+

∞∑
n=1

(−1)n+1x2n+1

(2n+ 1)!
=
∞∑
n=1

(−1)n+1x2n+1

(2n+ 1)!

is the power series expansion of x− sinx centered at c = 0. Consequently, we have that

x− sinx

x
=

1

x

∞∑
n=1

(−1)n+1x2n+1

(2n+ 1)!
=
∞∑
n=1

(−1)n+1x2n

(2n+ 1)!

is the power series expansion of x−sinx
x

centered at c = 0. �
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Example 81. Verify that L’Hôpital’s Rule can be used to compute the limit

lim
x→0

x− sinx

x3 cosx
;

then, explain the difficulty in doing so. Ultimately, compute the limit using power series.

Solution. By plugging in x = 0 to the numerator and denominator, we find that the form of the

limit is 0/0. We can therefore implement L’Hôpital’s Rule to find that

lim
x→0

x− sinx

x3 cosx
L’H
= lim

x→0

1− cosx

−x3 sinx+ 3x2 cosx
.

Once again, we plug in x = 0 to the numerator and denominator to find that the form of the limit

is 0/0, and we can implement L’Hôpital’s Rule again; however, we will have to use the Product

Rule twice. Ultimately, we find that in order to differentiate the denominator, we have to use the

Product Rule twice more than the last time, and we always have a ±x3 sinx or ±x3 cosx term.

By Example 80(a.) and (d.), we may use the power series expansions of x − sinx and x3 cosx

centered at c = 0 to compute the limit. Explicitly, we have that

lim
x→0

x− sinx

x3 cosx
= lim

x→0

x3

3
− x5

5!
+ x7

7!
− · · ·

x3 − x5

2!
+ x7

4!
− · · ·

= lim
x→0

x3
(
1
3
− x2

5!
+ x4

7!
− · · ·

)
x3
(
1− x2

2!
+ x4

4!
− · · ·

)

= lim
x→0

1
3
− x2

5!
+ x4

7!
− · · ·

1− x2

2!
+ x4

4!
− · · ·

=
1

3
. �

Example 82. Explain the difficulty in trying to find the antiderivative of sin(x2); then, compute

the power series expansion of the antiderivative sin(x2), and state its radius of convergence.

Solution. We would like to compute
∫

sin(x2) dx. Our first guess would be to try to use substitution

to find the antiderivative. Of course, we would let u = x2 so that du = 2x dx. But this gets

us nowhere because we do not have a factor of 2x in the integrand. Our second guess is to use

u = sin(x)2 so that du = cos(x2)(2x) dx, but this is also useless. By Example 79, we have that

sin(x2) =
∞∑
n=0

(−1)n(x2)2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)nx4n+2

(2n+ 1)!

is the power series expansion of sin(x2) centered at c = 0. Consequently, we have that

S(x) +C =

∫
sin(x2) dx =

∫ ∞∑
n=0

(−1)nx4n+2

(2n+ 1)!
=
∞∑
n=0

(−1)n

(2n+ 1)!

∫
x4n+2 dx =

∞∑
n=0

(−1)nx4n+3

(4n+ 3)(2n+ 1)!
,

where S(x) is an antiderivative of sin(x2). Considering that antidifferentiation does not change the

radius of convergence of a power series, the radius of convergence of this power series is R =∞. �
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Example 83. Explain the difficulty in trying to find the antiderivative of e1−x
2
; then, compute the

power series expansion of the antiderivative e1−x
2
, and state its radius of convergence.

Solution. We would like to compute
∫
e1−x

2
dx. Our first guess would be to try to use substitution

to find the antiderivative. Of course, we would let u = x2 so that du = 2x dx. But this gets us

nowhere because we do not have a factor of 2x in the integrand. Our second guess is to use u = e1−x
2

so that du = −2xe1−x
2
dx, but this is also useless. By Example 80(b.), we have that

e1−x
2

=
∞∑
n=0

(−1)nex2n

n!

is the power series expansion of e1−x
2

centered at c = 0. Consequently, we have that

F (x) + C =

∫
e1−x

2

dx =

∫ ∞∑
n=0

(−1)nex2n

n!
=
∞∑
n=0

(−1)ne

n!

∫
x2n dx =

∞∑
n=0

(−1)nex2n+1

(2n+ 1)n!
,

where F (x) is an antiderivative of e1−x
2
. Considering that antidifferentiation does not change the

radius of convergence of a power series, the radius of convergence of this power series is R =∞. �

The Area Between Curves

Example 84. Compute the area of the region R cut out by the curves f(x) = −x2 + 4 and

g(x) = x2 − 4 for all −2 ≤ x ≤ 2.

Solution. Graphing the curves, we find that f(x) ≥ g(x) for all −2 ≤ x ≤ 2. Further, observe that

−g(x) = f(x), from which it follows that f(x)− g(x) = 2f(x). Consequently, we have that

area(R) =

∫ 2

−2
[f(x)− g(x)] dx

= 2

∫ 2

−2
f(x) dx (Use our above observation.)

= 4

∫ 2

0

f(x) dx (
∫ a
−a f(x) dx = 2

∫ a
0
f(x) dx if f(x) is an even function.)

= 4

∫ 2

0

(−x2 + 4) dx = 4

[
−x3

3
+ 4x

]2
0

= 4

(
8− 8

3

)
. �

Example 85. Compute the area of the region R cut out by the curves f(x) = 2x+ 1 and g(x) =

2x − 4 for all −1 ≤ x ≤ 2. Explain how one can use geometry to verify that this area is correct.

Last, discuss what would happen if we were not given values of a and b such that a ≤ x ≤ b.
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Solution. Considering that −4 < 1, it follows that 2x− 4 ≤ 2x+ 1 for all −1 ≤ x ≤ 2 so that

area(R) =

∫ 2

−1
(2x+ 1− 2x+ 4) dx =

∫ 2

−1
5 dx = 5(2 + 1) = 15.

Graphing the curves f(x) and g(x), we find that the region R is a rhombus with a base of 5 and a

height of 3. Consequently, from elementary geometry, we have that area(R) = 5 · 3 = 15.

Last, if we were not given values of a and b such that a ≤ x ≤ b, the region R would have

infinite area. Explicitly, the curves f(x) and g(x) form a pair of parallel lines, hence there does

exist any real number c such that f(c) = g(c), and the region R is not closed. We would have that

area(R) =

∫ ∞
−∞

(2x+ 1− 2x+ 4) dx =

∫ ∞
−∞

5 dx =∞. �

Example 86. Compute the area of the region R cut out by the curves f(x) =
√
x and g(x) = x2.

Solution. We must first find real numbers a and b such that f(x) ≥ g(x) or g(x) ≥ f(x) for all

a ≤ x ≤ b. We accomplish this by checking when f(x) = g(x). Observe that

√
x = x2 ⇐⇒ x = x4 ⇐⇒ x4 − x = 0 ⇐⇒ x(x3 − 1) = 0 ⇐⇒ x = 0 or x = 1.

By inspection, we have that f(x) ≥ g(x) for all 0 ≤ x ≤ 1. Consequently, we have that

area(R) =

∫ 1

0

[f(x)− g(x)] dx =

∫ 1

0

(
√
x− x2) dx =

[
2

3
x3/2 − x3

3

]1
0

=
1

3
. �

Example 87. Prove that the region R cut out by the curves y = x, y = −x, and y = −2 is not

vertically simple; then, write the regionR as the union of two vertically simple regionsR = R1∪R2,

and find the area of R by using the fact that area(R1 ∪ R2) = area(R1) + area(R2). Check that

your final answer is correct using elementary geometry.

Solution. Observe that the curves y = x and y = −2 intersect when x = −2. Likewise, the curves

y = −x and y = −2 intersect when x = 2. Consequently, we have that a = −2 and b = 2. On

the contrary, if R were vertically simple, then there would exist well-defined curves ytop and ybottom
for all −2 ≤ x ≤ 2; however, for −2 ≤ x ≤ 0, we have that ytop = x and ybottom = −2, and

for 0 ≤ x ≤ 2, we have that ytop = −x and ybottom = −2. (One can check this graphically, too.)

Consequently, the region R is not vertically simple; rather, we can write R = R1 ∪R2 with

R1 = {(x, y) | − 2 ≤ x ≤ 0 and − 2 ≤ y ≤ x} and

R2 = {(x, y) | 0 ≤ x ≤ 2 and − 2 ≤ y ≤ −x}.

Certainly, both of these regions are vertically simple. �
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Example 88. Prove that the region R of Example 87 is horizontally simple by exhibiting well-

defined curves xleft and xright for all c ≤ y ≤ d; then, compute the area of R.

Solution. Graphing the curves, we find that xright = −y and xleft = y for all −2 ≤ y ≤ 0. �

Example 89. Describe the region in Example 86 as horizontally simple. List any observations you

have about your description of the region; then, compute its area.

Solution. We must exhibit well-defined curves xright = g2(y) and xleft = g1(y) for all c ≤ y ≤ d.

Observe that y = f(x) =
√
x implies that x = y2. Likewise, we have that y = g(x) = x2 implies

that x =
√
y. Using Example 89, we have that xright =

√
y and xleft = y2 for all 0 ≤ y ≤ 1. But this

is exactly the same description as in Example 86 with the names of x and y swapped, hence

area(R) =

∫ 1

0

(xright − xleft) dy =

∫ 1

0

(
√
y − y2) dy =

∫ 1

0

(
√
x− x2) dx =

1

3
. �

Example 90. Prove that the region R enclosed by the curves y = x − 2, y = 2 − x, y = −x + 2,

and y = −x− 2 is neither vertically nor horizontally simple.

Proof. Graphing these curves, we find that R is a square that is standing on one of its corners.

Consequently, the region R has symmetry about both the x- and y-axes, hence it suffices to check

that R is not vertically simple. Considering that R = R1 ∪R2 with

R1 = {(x, y) | − 2 ≤ x ≤ 0 and − x− 2 ≤ y ≤ x+ 2} and

R2 = {(x, y) | 0 ≤ x ≤ 2 and x− 2 ≤ y ≤ −x+ 2},

we conclude that R is not vertically simple, hence it is not horizontally simple.

Example 91. Compute −
∫ 1

0
lnx dx by viewing it as the area of some region R.

Solution. Considering that ln(x) ≤ 0 for all 0 < x ≤ 1, it follows that −
∫ 1

0
lnx dx is the area of the

region R bounded by the curves y = 0, y = lnx, x = 0, and x = 1. Observe that y = lnx if and

only if x = ey. Further, we have that d = lim
x→0+

lnx = −∞ and c = lim
x→1−

lnx = 0 so that

−
∫ 1

0

lnx dx = area(R) =

∫ 0

−∞
(xright − xleft) dy = lim

a→−∞

∫ 0

a

ey dy = lim
a→−∞

ey
∣∣∣∣0
a

= 1. �
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Volume, Density, and Average Value

Example 92. Prove that the volume of a sphere of radius R > 0 is 4
3
πR3.

Solution. By the paragraph above, we can use the formula for the volume by cross-sectional area.

Our cross sections may be taken vertically (i.e., perpendicular to the x-axis). Each of these is a

circle of radius r(x). By the Pythagorean Theorem, the diagram below gives that [r(x)]2 +x2 = R2,

from which it follows that r(x) =
√
R2 − x2. Considering that the vertical cross sections of a sphere

are circles of radius r(x), it follows that area(S) = π[r(x)]2. We conclude therefore that

volume(S) =

∫ R

−R
π[r(x)]2 dx = π

∫ R

−R
(R2 − x2) dx = 2π

∫ R

0

(R2 − x2) = 2π

[
R2x− x3

3

]R
0

=
4

3
πR3. �

Example 93. Prove that the volume of a right-circular cone of radius R and height H is 1
3
πR2H.

Solution. By the paragraph above, we can use the formula for the volume by cross-sectional area.

Observe that the horizontal cross sections of a right-circular cone C of radius R and height H are

circles of radius r(y). Considering the similar triangles in the diagram below, we have that

R

H
=

r(y)

H − y
,

from which it follows that r(y) = R
H

(H − y). Considering that the horizontal cross sections of a

27



right-circular cone are circles of radius r(y), it follows that area(C) = π[r(y)]2 so that

volume(C) =

∫ H

0

π[r(y)]2 dy = π
R2

H2

∫ H

0

(H − y)2 dy

= π
R2

H2

∫ H

0

u2 du (Use the substitution u = H − y.)

= π
R2

H2

u3

3

∣∣∣∣H
0

=
1

3
πR2H. �

Example 94. Compute the total mass of a rod of length 1 unit and lineal density ρ(x) = xex
2
.

Solution. Considering that the length of the rod is 1 unit, we have that

mass =

∫ 1

0

ρ(x) dx =

∫ 1

0

xex
2

dx =
1

2

∫ 1

0

eu du =
1

2
(e− 1). �

Example 95. Compute the average value of the function f(x) = x−1 on the interval
[
1
e
, 1
]
.

Solution. Considering that x−1 is continuous for all x 6= 0, it follows that x−1 is integrable on
[
1
e
, 1
]
.

We have therefore that

average value of x−1 on

[
1

e
, 1

]
=

1

1− 1
e

∫ 1

1/e

x−1 dx =
1

1− 1
e

lnx

∣∣∣∣1
1/e

=
ln(1)− ln(1/e)

1− 1
e

=
1

1− 1
e

. �

Example 96. Consider a car travelling with a velocity of v(t) units per minute. Prove that if the

car enters a 325 unit-long tunnel at t = 0 minutes and exits at t = 4 minutes and the speed limit in

the tunnel is 80 units per minute, then the car broke the speed limit at some point in the tunnel.
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Solution. Observe that the position function s(t) is the antiderivative of the velocity v(t). Con-

sequently, we have that s(4) − s(0) =
∫ 4

0
v(t) dt. By the Mean Value Theorem for Integrals, we

conclude that there exists a real number 0 ≤ c ≤ 4 such that

v(c) =
1

4− 0

∫ 4

0

v(t) dt =
1

4
[s(4)− s(0)] =

1

4
· 325 > 80 units per minute.

Our interpretation is that at some point in time 0 ≤ c ≤ 4, the velocity of the car exceeded the speed

limit of 80 units per minute, hence the car broke the speed limit at some point in the tunnel. �
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