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Dylan C. Beck

Review of Limits and Continuity

Consider a function f(x) defined on a subset U of the real numbers R. Given any value a in U, we

say that the limit of f(x) as x approaches a (if it exists) is the quantity L such that for every real

number ε > 0, there exists a real number δ > 0 such that |x − a| < δ implies that |f(x) − L| < ε.

Put another way, the quantity L can be made arbitrarily close to the value of f(x) by taking x to be

sufficiently close in value to a. Conveniently, if the quantity L exists, then we write L = lim
x→a

f(x).

Example 1. Compute the limit of f(x) = x2 as x approaches a = 1.

One-sided limits can be defined analogously to two-sided limits. Given that the left-hand limit of

f(x) as x approaches a exists, we write L− = lim
x→a−

f(x). Likewise, if the right-hand limit of f(x) as

x approaches a exists, we write L+ = lim
x→a+

f(x). Ultimately, the limit L exists if and only if

lim
x→a−

f(x) = lim
x→a

f(x) = lim
x→a+

f(x) or L− = L = L+.

Example 1, Revisited. Compute the limit of f(x) = x2 as x approaches a = 1.

Given that lim
x→a

f(x) = f(a), we say that f(x) is continuous at a. Further, if this is the case for

every real number a in U, then we say that f(x) is continuous on U.

Example 2. Prove that the function f(x) = |x| is continuous for all real numbers a.

Often, if a function is continuous for every real number in its domain D, we say that the function

is continuous, by which we mean that f(x) is continuous (in the above sense) on D. Graphically,

we may detect that a function is continuous if we can draw it without lifting our pencil.

Example 2, Revisited. Prove that the function f(x) = |x| is continuous for all real numbers a.

Continuous functions abound. Our prototypical examples of continuous functions are x, ex, lnx,

sinx, and cosx. Further, the operations of addition, subtraction, multiplication, division, composi-

tion, and any finite combination of these preserve continuity (with some caveats).
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Review of Derivatives and L’Hôpital’s Rule

Given a real number h > 0, consider the closed interval [x, x + h]. We define the secant line of

f(x) over this interval to be the line that passes through the points (x, f(x)) and (x+ h, f(x+ h)).

Observe that the slope of the secant line is given by the difference quotient

Dx(h) =
f(x+ h)− f(x)

(x+ h)− x
=
f(x+ h)− f(x)

h
.

By taking the limit of Dx(h) as h approaches 0, we obtain the derivative of f(x)

d

dx
f(x)

def
= f ′(x)

def
= lim

h→0
Dx(h) = lim

h→0

f(x+ h)− f(x)

h
.

Of course, this limit might not always exist; however, when it does, we interpret it geometrically as

the slope of the line tangent to f(x) at the point (x, f(x)). Given that the quantity f ′(x) exists, we

say that f(x) is differentiable. One fundamental interpretation of the derivative in the context of

a function that measures something physical (e.g., velocity) is as the instantaneous rate of change.

Example 3. Use the limit definition of the derivative to compute f ′(x) for f(x) = x2.

Fact: If f(x) is differentiable at x = a, then f(x) is continuous at a. Put another way, a function

that is differentiable at a point is necessarily continuous there. Conversely, there exists a function

that is continuous at every point in its domain but not differentiable at every point in its domain.

Proof. We will assume that f(x) is differentiable at x = a. Consequently, the limit

f ′(a) = lim
h→0

Da(h) = lim
h→0

f(a+ h)− f(a)

h

exists. Using the substitution x = a+ h, it follows that h = x− a and x→ a as h→ 0, hence

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Considering that x and a are continuous functions, it follows that x− a is continuous so that

0 = a− a = lim
x→a

(x− a).

Using the fact that the limit of a product is the product of limits (when both limits exist),

0 = f ′(a) · lim
x→a

(x− a) = lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a) = lim
x→a

f(x)− f(a)

x− a
· x− a = lim

x→a
[f(x)− f(a)],

hence lim
x→a

f(x) = lim
x→a

[f(a) + f(x)− f(a)] = lim
x→a

f(a) + lim
x→a

[f(x)− f(a)] = f(a).

Conversely, the function |x| is continuous on its domain, but it is not differentiable at a = 0.

Computing limits by definition is even more tedious than it looks, but luckily, there are plenty of

tools that allow us to compute derivatives of functions without ever touching a limit. Particularly,

2



• the Power Rule says that if f(x) = xr for some real number r, then f ′(x) = rxr−1;

• the Product Rule says that if f(x) and g(x) are both differentiable, then

d

dx
[f(x) · g(x)] = f ′(x)g(x) + f(x)g′(x);

• the Quotient Rule says that if f(x) and g(x) are both differentiable, then

d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

[g′(x)]2
; and

• the Chain Rule says that if f(x) and g(x) are both differentiable, then

d

dx
[f ◦ g(x)]

def
=

d

dx
[f(g(x))] = f ′(g(x)) · g′(x)

def
= [f ′ ◦ g(x)] · g′(x).

Computing the limit of a function that is continuous is quite easy: we may simply “plug and

chug;” however, there exist functions that are not continuous. Even worse, when evaluating limits,

we can encounter situations that result in an indeterminate form when the limit is the form

0

0
or
∞
∞
.

L’Hôpital’s Rule. Given real functions f(x) and g(x) that are differentiable on an open interval

(a, b) except possibly at the point x = c for some real number a ≤ c ≤ b, if

i.) lim
x→c

f(x) = lim
x→c

g(x) = 0 or lim
x→c

f(x) = lim
x→c

g(x) = ±∞,

ii.) g′(x) 6= 0 for any value a < x < b and x 6= c, and

iii.) lim
x→c

f ′(x)

g′(x)
exists, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Example 4. Compute the limit of f(x) =
lnx

x3 − 1
as x approaches a = 1.

Example 5. Given that
d

dx
sinx = cosx, compute the limit of f(x) =

sinx

x
as x approaches a = 0.

Caution: Unfortunately, this is not a valid proof of this limit identity. In fact, this limit identity is

needed to prove that d
dx

sinx = cosx. In order to prove this identity in a rigorous and non-circular

manner, we must use tools from trigonometry and the Squeeze Theorem.

Example 6. Compute the limit of f(x) = (2x− π) secx as x approaches a =
π

2
from the left.

Example 7. Compute the limit of f(x) =
sinx

sinx+ tanx
as x approaches a = 0.
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Integration and Improper Integrals

Calculus can be divided into two topics — differentiation and integration — that are connected by

the Fundamental Theorem of Calculus. Basically, the Fundamental Theorem of Calculus says that

differentiation and integration are inverse operations: if f(x) is continuous, then the derivative of

the integral of f(x) is f(x), and the integral of f ′(x) is f(x) + C, where C is a real number.

Consequently, if f(x) measures the velocity of a particle over time, then the (definite) integral

of f(x) (over some closed interval) measures the total distance travelled by the particle.

Quite technically, if we denote by P some collection of points (xn, f(xn)) on the graph of f(x)

with a = x1 < x2 < · · · < xn = b and ∆i = xi+1 − xi for each integer 1 ≤ i ≤ n− 1, then∫ b

a

f(x) dx
def
= lim
‖P‖→0

n−1∑
i=1

f(xi) ∆i

is the definite integral of f(x) over the closed interval [a, b], where ‖P‖ = max{∆i | 1 ≤ i ≤ n−1}.
Observe that we may interpret the definite integral

∫ b
a
f(x) dx to be the (signed) area between the

curve f(x) and the x-axis: the height of a rectangle is f(xi), and the width is ∆i. Given that the

definite integral of f(x) over the interval [a, b] exists, we say that f(x) is integrable on [a, b].

Like we have seen already, the limit definition is often quite cumbersome to use directly, hence

we wish to develop some tools that allow us to work with integrals in an optimal way. Our first step

toward that is to define an antiderivative of f(x) to be a function F (x) such that F ′(x) = f(x).

Example 8. Prove that the function F (x) = 1
3
x3 is an antiderivative of f(x) = x2.

Observe that for any antiderivative F (x) of a function f(x), there exists a family of antiderivatives

indexed by the real numbers. Particularly, the function G(x) = F (x) + C is an antiderivative of

f(x) for every real number C. Consequently, we may define the antiderivative of f(x) to be∫
f(x) dx = F (x) + C

for any real number C. By the familiar derivative rules, we obtain

• the Power Rule for integration, i.e.,
∫
xr dx = 1

r+1
xr+1 +C for all real numbers r 6= −1 and

• the Chain Rule for integration, i.e.,
∫

[f ′ ◦ g(x)] · g′(x) dx = f ◦ g(x) + C.

Further, we have that
∫
k · f(x) dx = k ·

∫
f(x) dx and

∫
[f(x) + g(x)] dx =

∫
f(x) dx +

∫
g(x) dx

for all real numbers k and all functions f(x) and g(x).

Example 9. Compute the antiderivative of f(x) = 1
x
.

Example 10. Compute the antiderivative of f(x) = sinx cosx.

Example 11. Compute the antiderivative of f(x) = xex
2
.
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The Fundamental Theorem of Calculus, Part I. Given a function f(x) with an antideriva-

tive F (x) on some closed interval [a, b], the definite integral of f(x) over [a, b] is given by∫ b

a

f(x) dx = F (b)− F (a).

Example 12. Compute the (signed) area under the curve f(x) = x3 from x = 0 to x = 1.

Example 13. Compute the (signed) area between f(x) = sin x and the x-axis on
[
−π

2
, π
2

]
.

The Fundamental Theorem of Calculus, Part II. Given a function f(x) that is continuous

on a closed interval [a, b], for all real numbers a < x < b, we have that

d

dx

∫ x

a

f(t) dt = f(x).

Example 14. Given a differentiable function g(x), use the Fundamental Theorem of Calculus and

the Chain Rule for derivatives to prove that

d

dx

∫ g(x)

a

f(t) dt = f ′(g(x))g′(x).

Our interest in integrals so far has been to find the (signed) area between the curve f(x) and the x-

axis; however, we have restricted ourselves to finite regions of the x-axis. Often, we are interested in

how a mathematical model behaves in the long-run, i.e., as x grows arbitrarily large (or approaches

±∞). Under this framework, we can develop the concept of the improper integral.

Given a function f(x) that is integrable over the closed region [a, b] for every real number b > a,

the improper integral of f(x) over the interval [a,∞) is defined to be∫ ∞
a

f(x) dx
def
= lim

b→∞

∫ b

a

f(x) dx = lim
b→∞

[F (b)− F (a)]

for some antiderivative F (x) of f(x) whenever this limit exists. One can analogously define the

improper integral of f(x) over the interval (−∞, b] whenever f(x) is integrable over the closed

region [a, b] for every real number a < b or the doubly improper integral of f(x) over (−∞,∞).

Example 15. Compute the improper integral
∫∞
1
x−2 dx.

Example 16. Compute the improper integral
∫ 1

−∞ e
x dx.

Example 17. Compute the improper integral
∫∞
−∞ xe

−x2 dx.

Each of the above functions has a horizontal asymptote, hence the improper integrals we computed

were all finite. One can also consider the improper integral of a function with a vertical asymptote.

Given that f(x) is continuous on the half-open interval [a, b) and lim
x→b−

f(x) = ±∞, we have that∫ b

a

f(x) dx
def
= lim

t→b−

∫ t

a

f(x) dx = lim
t→b−

[F (t)− F (a)]

for some antiderivative F (x) of f(x) whenever this limit exists. One can analogously define the

improper integral of f(x) over the half-open interval (a, b] whenever lim
x→a+

f(x) = ±∞.

5



Example 18. Compute the improper integral
∫ 1

0
(x− 1)−1 dx.

Example 19. Compute the improper integral
∫ 1

0
x−1/2 dx.

Example 20. Compute the improper integral
∫ 1

−1 x
−2/3 dx.

Conventionally, we say that an improper integrals converges whenever the limit in question exists,

and we say that it diverges if the limit does not exist. Even if we cannot explicitly compute an

improper integral, the Comparison Theorem allows us to say whether it converges or diverges.

Comparison Theorem for Improper Integrals. Consider the continuous functions f(x) and

g(x) such that f(x) ≥ g(x) ≥ 0 for each real number x ≥ a.

a.) If
∫∞
a
f(x) dx converges, then

∫∞
a
g(x) dx converges.

b.) If
∫∞
a
g(x) dx diverges, then

∫∞
a
f(x) dx diverges.

One can make analogous statements for the improper integrals
∫ b
−∞ f(x) dx and

∫ b
−∞ g(x) dx, doubly

improper integrals, and improper integrals of a function with a vertical asymptote.

Example 21. Determine the convergence or divergence of the improper integral
∫∞
0
xex dx.

Example 22. Determine the convergence or divergence of the improper integral
∫∞
0
x−2 sin2 x dx.

Sequences

One of our main focuses during Calculus II is to understand sequences and — ultimately — series.

Unwittingly, we have all encountered sequences in our lives at some point: if you have ever counted

while holding your breath, then you have recited a sequence; if you have ever attempted to memorize

some of the digits in the decimal expansion of π, then you have attempted to memorize a sequence;

or if you have ever entered a telephone number to place a call, then you have entered into your

phone a sequence. Basically, a sequence is just an ordered list of numbers. Put more precisely,

a sequence is an ordered list {an}kn=1 of k numbers a1, a2, . . . , ak, where k is a positive integer (or

whole number). We use the subscript n as an index so that the symbol an is the nth number that

appears in the sequence. Usually, we consider sequences that start with n = 1, but it is also possible

to think about sequences that begin with any non-negative (or even negative!) whole number index.

Unfortunately, the digits of a telephone number are often quite random, and there is no formula

for the nth digit in the decimal expansion of π, so it is impossible to come up with formulae for

these sequences; however, there are plenty of sequences for which there exists a formula for the nth

term. For instance, the natural (or positive whole) numbers N — obtained by counting up from 1,

adding 1 each time — can be listed sequentially as 1, 2, 3, . . . , n, . . . , hence the infinite sequence

{n}∞n=1 = lim
k→∞
{n}kn=1 = lim

k→∞
{1, 2, 3, . . . , k} = {1, 2, 3, . . . , n, . . . }

consists of all natural numbers. We could also write this sequence as an = n for each integer

n ≥ 1. Our interest lies in those sequences (finite or infinite) which we can explicitly write down as

an = f(n) for all elements n of some index set N that consists of positive whole numbers.
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Example 23. Find an explicit formula an = f(n) for the infinite sequence −1, 1,−1, 1, . . . that

alternates between −1 and 1. Be sure to specify the index set N, e.g., N = {n ∈ N |n ≥ 1}.

Example 24. Find an explicit formula an = f(n) for the infinite sequence that starts 1, 1
2
, 1
4
, 1
8
, 1
16
,

etc. Be sure to specify the index set N, e.g., N = {n ∈ N |n ≥ 1}.

One can define a sequence recursively by stating a formula for the nth number in the sequence

in terms of some of the preceding entries of the sequence. Certainly, the sequence an = n for each

integer n ≥ 1 can be written as an = an−1 + 1 = an−2 + 2 = · · · = a1 + n− 1 for each integer n ≥ 1;

however, this is needlessly complicated because we already have a closed form for this sequence,

i.e., we can already write the sequence an as a function f(n) in which n is the only variable.

Curiously enough, even the most simple presentations of a sequence recursively can yield sur-

prisingly complicated closed forms. Consider the Fibonacci sequence an = an−1 + an−2 for each

integer n ≥ 2 with a0 = 0 and a1 = 1. One can prove that the closed form for this is given by

an = f(n) =
(−1)n−1φ−n + φn√

5
, where φ =

1 +
√

5

2
is the Golden Ratio.

Example 25. Find a closed form for the sequence an = 2an−1 for each integer n ≥ 2 and a1 = 1.

Computing closed forms for recursive sequences is crucial in the field of computer science, and

a rigorous treatment of the subject is often given in any numerical analysis course, but for our

purposes, we will not do much more with them than these couple of examples.

Given a sequence an for some index set N that consists of positive whole numbers, we can always

“reindex” the sequence so that it is defined for each integer n ≥ 1, so we will assume henceforth

that our sequences are all of the form {an}∞n=1. We say that the sequence {an}∞n=1 converges if

there exists some real number L such that for every real number ε > 0, there exists a positive real

number M with the property that |an − L| < ε whenever we have that n > M. Put another way,

the quantity L can be made arbitrarily close to the value of an by taking n to be sufficiently large.

Given that no such real number L exists, we say that {an}∞n=1 diverges. Further, if the terms of

an increase (or decrease) without bound, then an diverges to infinity (or negative infinity).

Our prototypical example of a convergent sequence is the sequence of reciprocals of natural

numbers an = 1
n
. Observe that as n grows, the reciprocals 1

n
become smaller but remain positive.

Consequently, we suspect that lim
n→∞

an = 0. Let us prove this. Given any real number ε > 0, we want

to find a positive real number M such that whenever n > M, we have that
∣∣ 1
n

∣∣ < ε. Considering

that n ≥ 1, we have that 1
n
> 0 so that

∣∣ 1
n

∣∣ = 1
n
. We can ensure that 1

n
< ε by taking n > 1

ε
, hence

our choice for M is obvious: we should take M to be 1
ε
. Unwinding this gives a formal proof.

Proof. We claim that lim
n→∞

1
n

= 0. Given any real number ε > 0, if we have that n > M = 1
ε
, then∣∣∣∣ 1n

∣∣∣∣ =
1

n
<

1

M
=

1
1
ε

= ε.

Example 26. Compute the limit of the sequence an =
1

2n
, or prove that it does not exist.
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Example 27. Compute the limit of the sequence an = (−1)n, or prove that it does not exist.

By definition, the limit of an infinite sequence an depends only on the values that an takes for

sufficiently large indices n. Given some arbitrarily large (but fixed) positive real number M, we

refer to the values of an for all indices n > M as the M-tail of the sequence an. Consequently, the

limit of an infinite sequence depends only on the M -tail of an, and as such, it will not be altered

if we change (or omit) finitely many terms — namely, all of those terms an for n ≤ M. Further, if

there exists a real number C such that an = C for all indices n > M, then lim
n→∞

an = C.

Other than the Fibonacci sequence, we have studied (and will primarily study) only sequences

{an}∞n=1 with a closed form, i.e., infinite sequences for which there exists a function f(n) such that

an = f(n) for each integer n ≥ 1. Consequently, we can think about sequences as functions whose

domains have been restricted to the positive whole numbers. Using the tools that we have from

Calculus I — limits, derivatives, L’Hôpital’s Rule, etc. — we can better understand sequences with

closed forms in terms of the functions that define them. Particularly, we have the following fact.

Fact: Given a sequence {an}∞n=1 such that an = f(n) for some function f : R>0 → R, we have that

lim
n→∞

an = lim
x→∞

f(x).

Proof. Compare the definitions to see that this is true. Explicitly, if there exists a real number L

such that lim
x→∞

f(x) = L, then by definition, given a real number ε > 0, there exists a positive real

number M such that |f(x) − L| < ε for all real numbers x > M. But if this is true for all real

numbers x > M, then it is certainly true for all positive whole numbers n > M so that lim
n→∞

an = L.

Use the analogous argument in the case that lim
x→∞

f(x) = ±∞ to show that lim
n→∞

an = ±∞.

Example 28. Compute the limit of the sequence an =
sinn

n
.

Example 29. Compute the limit of the sequence an =
lnn

n
.

Example 30. Compute the limit of the sequence an =
n4 − 5n3 + 3n2 + 1

3n4 − 7n2 + n+ 1
.

Given any real numbers c 6= 0 and r ≥ 0, we refer to a sequence of the form an = crn as a geometric

sequence. Considering that an measures the hypervolume of the n-dimensional hypercube of side

length r that has been dilated by a factor of c, the sequence an = crn does indeed describe something

geometric — hence the name. We refer to the constant r as the common ratio of the geometric

series since it can be obtained by taking the ratio of each term with its preceding term:

r = rn+1−n =
rn+1

rn
=
crn+1

crn
=
an+1

an
for each integer n ≥ 1.

We can completely classify the convergence of geometric sequences by the following fact.
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Fact: Given any real number c 6= 0, the geometric sequence an = crn satisfies

lim
n→∞

an = lim
n→∞

crn =


0 if 0 ≤ r < 1;

c if r = 1; and

∞ if r > 1.

Proof. Consider the function f(x) = crx. Observe that an = f(n) for each integer n ≥ 1, hence

lim
n→∞

crn = lim
n→∞

an = lim
x→∞

f(x) = lim
x→∞

crx = c · lim
x→∞

rx.

Certainly, this limit is 0 if r = 0. Consequently, we will assume that r > 0 so that rx > 0. We have

therefore that rx = eln r
x

= ex ln r. Given that r < 1, it follows that ln r < 0 so that

lim
n→∞

crn = c · lim
x→∞

rx = c · lim
x→∞

ex ln r = lim
t→−∞

et = 0,

where we have used the fact that if t = x ln r, then t→ −∞ as x→∞. Given that r = 1, it follows

that ln r = 0 so that rx = ex ln r = e0 = 1, from which it follows that

lim
n→∞

crn = c · lim
x→∞

rx = c · lim
x→∞

1 = c.

Given that r > 1, it follows that ln r > 0 so that

lim
n→∞

crn = c · lim
x→∞

rx = c · lim
x→∞

ex ln r = lim
t→∞

et =∞.

Example 31. Determine if the sequence an =
1

33n−2 is geometric. If so, find the constant c and the

common ratio r, and determine with justification if an converges or diverges; if not, explain why.

Example 32. Determine if the sequence 6,−3, 3
2
,−3

4
, etc. is geometric. If so, find the constant c

and the common ratio r, and determine with justification its convergence; if not, explain why.

Example 33. Determine if the sequence an = ln eπ is geometric. If so, find the constant c and the

common ratio r, and determine with justification if an converges or diverges; if not, explain why.

Considering that the definition of the limit of a sequence is closely related to the definition of the

limit of a function at ±∞, it is not surprising that the familiar limit laws holds for sequences.

Limit Laws for Sequences. Given convergent sequences with lim
n→∞

an = L and lim
n→∞

bn = M,

i.) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn = L±M ;

ii.) lim
n→∞

anbn =
(

lim
n→∞

an
)(

lim
n→∞

bn
)

= LM ; and

iii.) lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
=

L

M
whenever M 6= 0.

Likewise, there is an analog of the Squeeze Theorem for sequences.
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Squeeze Theorem for Sequences. Given any sequences an, bn, and cn such that

i.) bn ≤ an ≤ cn for all integers n > M for some positive real number M and

ii.) lim
n→∞

bn = lim
n→∞

cn = L,

we have that lim
n→∞

an = L.

Example 34. Prove that if lim
n→∞
|an| = 0, then lim

n→∞
an = 0.

Example 35. Given any real number c 6= 0, prove that the geometric sequence an = crn satisfies

lim
n→∞

an = lim
n→∞

crn =

{
0 if 1 < r < 0 and

DNE if r ≤ −1.

Example 36. Given any real number c, prove that lim
n→∞

cn

n!
= 0.

Hint: Of course, if c = 0, then this is clear because the sequence is constantly 0. Consider the case

that M ≤ c < M + 1 for some integer M ≥ 0. Consider the nth term of the sequence.

cn

n!
=

c · c · c · · · c · c · c · · · c
1 · 2 · · ·M · (M + 1) · (M + 2) · · · (n− 1) · n

=
c

1
· c

2
· c

3
· · · c

M︸ ︷︷ ︸
Call this constant R.

· c

M + 1
· c

M + 2
· · · c

n− 1︸ ︷︷ ︸
Each term here is <1.

· c
n

Use the Squeeze Theorem and Example 34 to finish the proof.

Continuous functions are characterized by the property that lim
x→L

f(x) = f(L), i.e., the limit can be

pushed inside the function. Luckily, the same holds for limits of continuous functions of sequences.

Limits Commute with Continuous Functions. Given a continuous function f(x) and a con-

vergent sequence an such that lim
n→∞

an = L, the sequence f(an) is convergent, and its limit is

lim
n→∞

f(an) = f
(

lim
n→∞

an
)

= f(L).

Example 37. Compute the limit of the sequence an = sin(e−n).

We have already fully classified the convergence of geometric sequences. Consequently, one naturally

questions whether we can fully classify the convergence of all sequences.

Our first step toward that goal is to study sequences that are bounded. We say that a sequence

an is bounded above if there exists a real number M+ such that an ≤M+ for all integers n ≥ 1.

Likewise, we say that a sequence is bounded below if there exists a real number M− such that

an ≥ M− for all integer n ≥ 1. Combining these two notions, we say that a sequence is bounded

whenever it is bounded above and bounded below. Given that this is not the case (i.e., the sequence

is either not bounded above or not bounded below), we say that the sequence is unbounded.

Convergent Sequences Are Bounded. If the sequence an converges, then an is bounded.

10



Proof. Given that an converges, there exists a real number L such that lim
n→∞

an = L. By definition

of the limit, there exists a positive real number N such that |an −L| < 1 for all n > N. Unraveling

this gives that L−1 < an < L+ 1 for all n > N. We can choose M+ to be larger than a1, a2, . . . , aN
and L+ 1. Likewise, we can choose M− to be smaller than a1, a2, . . . , aN and L− 1.

Essentially, the proof of the above fact uses the definition of the limit of an to explicitly construct

an upper and lower bound for an. We refer to such a proof as a constructive proof.

Contrapositively, this fact states that if an is unbounded, then an diverges. On the other hand,

we have already encountered bounded but divergent sequences, e.g., an = (−1)n. Quite generally,

every oscillating sequence is bounded and divergent. We say that a sequence is oscillating if there

exist (at least) two distinct constants at which the sequence takes values for infinitely many indices.

Given that a sequence an is (eventually) monotone, then its boundedness is sufficient to conclude

convergence. We say that an is monotone if it is either increasing or decreasing. Particularly, an
is increasing (or decreasing) if an ≤ an+1 (or an ≥ an+1) for all n > M for some constant M.

Criterion for Monotonicity. Given a sequence an = f(n) for some function f : R>0 → R, if f(x)

is differentiable and f ′(x) ≥ 0 (or f ′(x) ≤ 0) for all x > M, then an is increasing (or decreasing).

Example 38. Determine whether the sequence an = sin

(
1

n

)
is monotone.

Example 39. Determine whether the sequence an = −ne−n2
is monotone.

Example 40. Determine whether the sequence an = cos(πn) is monotone.

Monotone Convergence Theorem. A monotone sequence an converges if and only it is bounded.

Explicitly, if an is increasing and bounded above by M+, then an converges and lim
n→∞

an ≤ M+.

Likewise, if an is decreasing and bounded below by M−, then an converges and lim
n→∞

an ≥M−.

Example 41. Determine whether the sequence an = sin

(
1

n

)
converges. If so, find the limit.

Example 42. Determine whether the sequence an = −ne−n2
converges. If so, find the limit.

Example 43. Determine whether the sequence an = cos(πn) converges. If so, find the limit.

Basics of Infinite Series

One of the most powerful and important tools in all of mathematics is the infinite series. Countless

uses for series abound in approximation theory, real analysis, complex analysis, combinatorics,

probability, and statistics. Concretely, infinite series can be used to approximate π (and many

other irrational numbers) to any desired degree of accuracy: we will eventually learn that

π = 4− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+ · · · .

11



Of course, we have already familiarized ourselves with finite series: the Riemann sum

n−1∑
k=1

f(xk) ∆xk = f(x1) ∆x1 + · · ·+ f(xn−1) ∆xn−1

for some function f(x) and some sequence of points {xk}n−1k=1 with ∆xk = xk+1− xk for each integer

1 ≤ k ≤ n − 1 is a finite series from Calculus I. We refer to this presentation of the sum as sigma

notation (named for the Greek letter sigma Σ). Certainly, a finite series can be evaluated by simply

adding up all of its terms, hence we are interested in evaluating infinite series (when possible).

We define an infinite series as the limit of the partial sums of a finite series, i.e.,

a1 + a2 + · · ·+ an + · · · =
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

(a1 + a2 + · · ·+ an)
def
= lim

n→∞
sn,

where sn =
∑n

k=1 ak = a1+a2+ · · ·+an is the nth partial sum of the infinite series. Consequently,

we can think of an infinite series as the limit of the sequence {sn}∞n=1 of its partial sums.

Example 44. Find the first five partial sums of the infinite series
∞∑
k=1

1

k
.

Considering an infinite series as the limit of its sequence of partial sums, we can apply all of the

techniques from section 10.1 to our study of infinite series. Particularly, we have the following fact.

Convergence of Partial Sums Implies Convergence of Infinite Series. Given any whole num-

ber m ≥ 1, the infinite series
∑∞

k=m ak converges if and only if the sequence sn =
∑n

k=m ak converges.

Further, we have that
∑∞

k=m ak = s = lim
n→∞

sn = lim
n→∞

∑n
k=m ak. Given that s does not exist, we say

that the series diverges. Given that s = ±∞, we say that the series diverges to infinity.

Example 45. Find an explicit formula for the partial sums of the infinite series
∞∑
k=1

1

2k
; then,

determine whether the infinite series converges. If so, find its value.

Hint: Use the fact that 1 + 2 + · · ·+ 2n−1 = 2n − 1 to find sn.

Certain types of infinite series are easier to compute than others. One of these is the telescoping

series whose nth partial sum can be written as sn = c+f(n) for some constant c and some function

f : R>0 → R. Consequently, the telescoping series converges if and only if sn = c + f(n) converges

if and only if f(n) converges, and its value is equal to lim
n→∞

sn = lim
n→∞

[c+ f(n)] = c+ lim
n→∞

f(n).

Example 46. Determine if the infinite series
∞∑
k=1

(
1

2k
− 1

2k + 2

)
converges. If so, find its value.

Using the technique of partial fraction decomposition, one can recognize many infinite series as

telescoping series, rendering them far easier to compute than meets the eye.

Given a geometric sequence an = crn for some nonzero real numbers c and r, the infinite series∑∞
n=0 an =

∑∞
n=0 cr

n is said to be a geometric series. Like with geometric sequences, we can

completely classify convergence of a geometric series based on the common ratio r.

12
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Fact: Given any real number c 6= 0, the geometric series
∑∞

n=0 cr
n satisfies

∞∑
n=0

crn =


c

1− r
if |r| < 1

diverges if |r| ≥ 1.

Proof. Given that r = 1, the nth partial sum of the geometric series is given by

sn = c+ c+ · · ·+ c︸ ︷︷ ︸
n summands

= n · c.

Consequently, we have that lim
n→∞

n · c = c · lim
n→∞

n =∞, and the geometric series diverges to ∞.
Given that r 6= 1, observe that (1 + r + · · ·+ rn)(1− r) = 1− rn+1, from which it follows that

sn = c(1 + r + · · ·+ rn) = c · 1− rn+1

1− r

is the nth partial sum of the geometric series. Consequently, we have that

lim
n→∞

sn = c · lim
n→∞

1− rn+1

1− r
= c ·

1− lim
n→∞

rn+1

1− r
,

and this diverges whenever |r| ≥ 1 and r 6= 1 and converges to
c

1− r
whenever |r| < 1.

Fact: Given any real numbers c and r with |r| < 1, we have that
∞∑
n=k

crn =
crk

1− r
.

Proof. By the fact, above, we have that

∞∑
n=k

crn =
∞∑
n=0

crn − (c+ cr + · · ·+ crk−1) =
c

1− r
− c(1− rk)

1− r
=

crk

1− r
.

Example 47. Determine if the infinite series
∞∑
n=1

(ln eπ)n converges. If so, find its value.

Later in the course, we will consider infinite series as the discrete analog of improper integrals. Like

with convergent integrals, there are nice linearity properties for convergent series.

Linearity of Convergent Series. Given convergent series
∑
an and

∑
bn, we have that

(i.)
∑

(an ± bn) =
∑
an ±

∑
bn and

(ii.)
∑
can = c ·

∑
an for any constant c.

Particularly, any linear combination of convergent series is a convergent series.

We have thus far determined when telescoping and geometric series are convergent. Conversely, we

can determine when an infinite series is divergent by inspecting its summands.
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The Divergence Test. Given that lim
n→∞

an 6= 0, we have that
∑
an is divergent.

Proof. Observe that the partial sums of
∑
an are given by sn = a1 + · · · + an−1 + an and sn−1 =

a1 + · · ·+an−1 so that sn = sn−1 +an and an = sn−sn−1. Given that
∑
an converges, it follows that

lim
n→∞

sn = s and lim
n→∞

sn−1 = s so that lim
n→∞

an = lim
n→∞

sn−sn−1 = lim
n→∞

sn− lim
n→∞

sn−1 = s−s = 0.

On first glance, it might appear that the above proof did not actually establish what we intended:

we proved that if
∑
an is convergent, then lim

n→∞
an = 0. We refer to this is a proof by contrapositive.

Example 48. Determine if the infinite series
∞∑
n=1

n!

10n
converges. If so, find its value.

Example 49. Determine if the infinite series
∞∑
n=7

n3 + n2 + n+ 1

n3 − n2 + n− 1
converges. If so, find its value.

Caution. Often, upon first learning the Divergence Theorem, students get mixed up in the logic

of what exactly the theorem guarantees. Put explicitly, the theorem says that

1.) if the limit of the sequence an of terms of the series does not converge to 0, then it is impossible

for the series
∑
an to converge, and

2.) if the series
∑
an converges, then the sequence an of terms of the series must converge to 0.

Consequently, we are able to decipher when a series diverges by the Divergence Test — hence the

name; however, the drawback is that we cannot tell that a series converges by the Divergence Test.

The Converse of the Divergence Test Is False. There exists a sequence an with lim
n→∞

an = 0

such that the infinite series
∑
an diverges.

Proof. Consider the sequence an =
1

n
. We have seen in the exposition preceding Example 26 that

lim
n→∞

an = 0. On the other hand, observe that

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

>
1

1
+

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ · · ·

=
1

1
+

1

2
+ 2 · 1

4
+ 4 · 1

8
+ · · ·

=
1

1
+

1

2
+

1

2
+

1

2
+ · · ·

=∞.
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Considering that this is our prototypical counterexample to the converse of the Divergence Test,

we give it a name: we refer to the divergent infinite series
∑

1
n

as the harmonic series.

Example 50. Prove that an =
1√
n

satisfies lim
n→∞

an = 0; then, prove that
∑
an diverges.

Hint: Toward a proof of the second statement, we may first find a suitable lower bound for the

sequence sn of partial sums of
∑
an. We claim then that lim

n→∞
sn =∞.

Convergence Tests for Series

Given a sequence ak such that ak ≥ 0 for all k sufficiently large, one immediate interpretation of the

infinite series
∑∞

k=m ak = am+am+1+· · · is as the area of the (infinitely many) rectangles with width

1 and height ak for each integer k ≥ m. Consequently, it follows that the sequence sn of partial sums

of
∑∞

k=m ak is an increasing sequence, and we can apply the Monotone Convergence Theorem to

determine the convergence of the infinite series by the fact that
∑∞

k=m ak = lim
n→∞

∑n
k=m ak = lim

n→∞
sn.

Convergence of a Series with Positive Terms. Given a sequence ak such that ak ≥ 0 for all

integers k sufficiently large,

(a.) if the sequence sn of partial sums is bounded above, then
∑∞

k=m ak converges, and

(b.) if the sequence sn of partial sums is not bounded above, then
∑∞

k=m ak diverges.

Often, in practice, it is difficult to find a closed form for the partial sums of a series, hence it is

difficult to determine if the sequence of partial sums is bounded above. Luckily, we can say more.

The Integral Test. Given a sequence ak = f(k) for some function f(x) that is positive, decreasing,

and continuous for all real numbers x ≥ m, then

(i.) if
∫∞
m
f(x) dx converges, then

∑∞
n=m an converges, and

(ii.) if
∫∞
m
f(x) dx diverges, then

∑∞
n=m an diverges.

Proof. By our above interpretation, the infinite series
∑∞

k=m ak represents the area of the (infinitely

many) rectangles with width 1 and height an = f(n). Considering that f(x) is decreasing, it follows

that the right endpoint approximation is an underestimate, i.e., am+1 + · · ·+ ab ≤
∫ b
m
f(x) dx for all

integers b ≥ m+ 1. We conclude therefore that
∑∞

n=m an = lim
b→∞

∑b
n=m an ≤ lim

b→∞

∫ b
m
f(x) dx. On the

other hand, the left endpoint approximation is an overestimate, i.e., am+ · · ·+ab−1 ≥
∫ b
m
f(x) dx for

all integers b ≥ m+ 1. Consequently, we have that
∑∞

n=m an = lim
b→∞

∑b
n=m an ≥ lim

b→∞

∫ b
m
f(x) dx.

Example 51. Use the Integral Test to prove that
∞∑
n=m

1

n
diverges for any positive integer m.

Example 52. Use the Integral Test to determine the convergence of
∞∑
n=m

1

1 + n2
.
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Using facts about
∫∞
m

1
xp

for some real number p and positive integer m, we can use the Integral

Test to determine the convergence (or divergence) of a family of series known as p-series.

The p-Series Test. Given a real number p 6= 0, we refer to
∞∑
n=m

1

np
as a p-series.

(i.) If p > 1, then the p-series
∞∑
n=m

1

np
converges.

(ii.) If p ≤ 1, then the p-series
∞∑
n=m

1

np
diverges.

Proof. Given that p ≤ 0, we have that 1
np ≥ 1 for all n ≥ m, hence the series diverges by the

Divergence Test. Given that p > 0, the function 1
xp

is positive, decreasing, and continuous for all

x ≥ m. By the Integral Test, we have that
∑∞

n=m
1
np converges if and only if

∫∞
m

1
xp
dx converges.

Evaluating this improper integral in either case establishes the result. Explicitly, we have that

∫ ∞
m

1

xp
dx = lim

b→∞

∫ b

m

x−p dx =


lim
b→∞

x1−p

1− p

∣∣∣∣b
m

if p 6= 1 and

lim
b→∞

lnx

∣∣∣∣b
m

if p = 1.

Given that p > 1, it follows that 1− p < 0 so that the limit converges. On the other hand, if p < 1,

then 1− p > 0 so the limit diverges to infinity. Certainly, the limit of lnx diverges to infinity.

Example 53. Use the p-Series Test to determine the convergence of
∞∑
n=m

1
5
√
n7
.

Example 54. Use the p-Series Test to determine the convergence of
∞∑
n=m

1
7
√
n5
.

Of course, the p-Series Test only applies to the reciprocal of power functions, so it is not (immedi-

ately) applicable to determine the convergence of series the likes of
∑∞

n=0
n2

1+n5 . Further, we would

not want to endeavor to use the Integral Test on such a series because the antiderivative of the

function x2

1+x5
is absolutely horrendous. But rest assured, we are not out of luck!

The Direct Comparison Test. Given sequences an and bn such that there exists a real number

M with 0 ≤ an ≤ bn for all integers n > M,

(i.) if
∑
bn converges, then

∑
an converges and

(ii.) if
∑
an diverges, then

∑
bn diverges.
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Proof. By hypothesis that 0 ≤ an ≤ bn for all integers n > M, we have that

an + · · ·+ aN ≤ bn + · · ·+ bN

for all integers N ≥ n > M. Consequently, if
∑
bn converges, then the sequence sn of partial

sums of
∑
bn is bounded above by the Monotone Convergence Theorem since sn is increasing and

convergent. We have therefore that the sequence tn of partial sums of
∑
an is bounded above, and

the Monotone Convergence Theorem guarantees that
∑
an converges because tn is increasing and

bounded above. Considering that (ii.) is the contrapositive to (i.), our proof is complete.

Example 55. Use the Direct Comparison Test to determine the convergence of
∞∑
n=0

n2

1 + n5
.

Example 56. Use the Direct Comparison Test to determine the convergence of
∞∑
n=0

1
7
√
n5 + 1

.

Hint: Establish that there exists a real number M with 0 ≤ 1

n
≤ 1

7
√
n5 + 1

for all integers n > M.

Observe that this is equivalent to showing that n ≥ 7
√
n5 + 1 or n7 − n5 − 1 ≥ 0.

Our previous example shows that the Direct Comparison Test can be employed to test for con-

vergence of the reciprocal of a composition of a polynomial and a power function; however, this

application is not always the most straightforward, as we have seen in Example 56: our knee-jerk

reaction is to compare to the divergent p-series with p = 5/7; however, this does not result in

anything useful. Once again, there is a more powerful test that we can use instead.

The Limit Comparison Test. Given sequences an, bn ≥ 0, consider the limit L = lim
n→∞

an
bn
.

(i.) If L > 0, then
∑
an converges if and only if

∑
bn converges.

(ii.) If L =∞, then if
∑
an converges, then

∑
bn converges.

(iii.) If L = 0, then if
∑
bn converges, then

∑
an converges.

Proof. We will assume first that L ≥ 0. Consequently, we may find a real number R > L such that

0 ≤ an
bn
≤ R for all integers n sufficiently large. We have therefore that 0 ≤ an ≤ Rbn. By the Direct

Comparison Test, if
∑
bn converges, then

∑
an converges, hence the forward direction of part (i.)

and part (iii.) are both established. We will assume now that L > 0 or L =∞. Consider the limit

K = lim
n→∞

bn
an
.

Observe that K = 1
L

is finite. Particularly, we have that K ≥ 0. By the previous paragraph, we

may reverse the roles of an and bn to conclude the converse of part (i.) and part (ii.).

Unfortunately, though this proof is quite clever, it obscures the intuition behind the Limit Com-

parison Test. Essentially, one can rephrase the three statements in the following manner.
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(i.) If L > 0, then for n sufficiently large, we have that an ≈ Lbn. Consequently,
∑
an converges

if and only if
∑
bn converges because these series are scalar multiples of each other.

(ii.) If L = ∞, then the sequence an is eventually significantly larger than bn, hence if
∑
an

converges, then
∑
bn must also converge (by the Direct Comparison Test).

(iii.) If L = 0, then the sequence bn is eventually significantly larger than an, hence if
∑
bn con-

verges, then
∑
an must also converge (by the Direct Comparison Test).

Example 57. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

1
7
√
n5 + 1

.

Example 58. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

n3 − n2 + n− 1

n4 − n3 + n2 − n+ 1
.

Absolute and Conditional Convergence

Our study of infinite series so far has given us the tools to recognize many different families of series

of which we can readily determine the convergence. Geometric series are of the form
∑
crn for some

real numbers c and r, and these converge if and only if |r| < 1. We have also discussed the family

of p-series
∑

1
np for some real number p: these converge if and only if p > 1.

Last section, we developed a broad array of tests to determine convergence of series with positive

terms (or only finitely many negative terms). Unfortunately, we have yet to concern ourselves with

non-geometric series that contain infinitely many negative terms. For instance, we know that the

harmonic series
∑

1
n

diverges (as it is a p-series with p = 1); however, we shall soon discover the

curious fact that the alternating harmonic series
∑

(−1)n 1
n

converges!

Considering that we have many ways to determine if a series of positive terms converges, it

makes sense to think about the series
∑
|an| for some sequence an. We say that the series

∑
an

converges absolutely (or
∑
an is absolutely convergent) whenever the series

∑
|an| converges.

Example 59. Determine if the series
∞∑
n=1

(−1)nn−π is absolutely convergent.

Absolute Convergence Implies Convergence. If
∑
|an| converges, then

∑
an converges.

Proof. By definition of the absolute value, we have that −|an| ≤ an ≤ |an| from which it follows

that 0 ≤ an + |an| ≤ 2|an|. By the Direct Comparison Test, if
∑
|an| converges, then

∑
(an + |an|)

converges. Further, we have that
∑
an =

∑
(an+ |an|−|an|) =

∑
(an+ |an|)−

∑
|an| converges.

Example 60. Determine if the series
∞∑
n=1

(−1)nn−2 converges.

Like we mentioned above, the alternating harmonic series
∑

(−1)n 1
n

converges; however, the har-

monic series
∑

1
n

does not converge. Generally, we say that the series
∑
an converges condi-

tionally (or
∑
an is conditionally convergent) whenever

∑
an converges and the series

∑
|an|

diverges. Consequently, alternating harmonic series is conditionally convergent. But why?
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The Alternating Series Test. Given a series
∑
an such that an = (−1)nbn for some positive and

decreasing sequence bn such that lim
n→∞

bn = 0, the series
∑
an converges.

Example 61. Prove that the alternating harmonic series
∞∑
n=1

(−1)n
1

n
converges.

Example 62. Determine all values of p such that the alternating p-series
∞∑
n=1

(−1)n
1

np
converges.

Explain how this differs from the case of the non-alternating p-series
∞∑
n=1

1

np
.

The Ratio Test

We have presented thus far many tests for determining the convergence of infinite series; however,

we have always paid strong attention to the sign of the terms of the series. Particularly, we cannot

apply the Integral Test or either of the Comparison Tests to a series whose terms alternate in sign.

On the other hand, we cannot apply the Alternating Series Test to a series with positive terms.

Our last two series tests can be applied to any series regardless of the sign of the general terms.

The Ratio Test. Given the series
∑
an, consider the limit

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.
(a.) If L < 1, then

∑
an converges absolutely.

(b.) If L > 1, then
∑
an diverges.

(c.) If L = 1, then the series could converge or diverge.

Proof. We can easily dispense of the case that L = 1: the infinite series
∑

1
n

and
∑

1
n2 both satisfy

L = 1, but the former diverges, and the latter converges by the p-Series Test.

By definition of the limit, given any real number ε > 0, there exists a real number M such that

for all integers n ≥ M, we have that −ε < |an+1/an| − L < ε. By simplifying this expression, we

have that L− ε < |an+1/an| < L + ε = r for all integers n ≥ M. Given that L < 1, we can ensure

that r < 1 by taking ε to be sufficiently small. Observe that we have

|aM+1| < |aM |r,
|aM+2| < |aM+1|r < |aM |r2,
|aM+3| < |aM+2|r < |aM+1|r2 < |aM |r3,

and in general, |aM+n| < |aM |rn. Consequently, we have that

∞∑
n=M

|an| =
∞∑
k=0

|aM+k| =
∞∑
n=0

|aM+n| <
∞∑
n=0

|aM |rn = |aM |
∞∑
n=0

rn.
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By the Geometric Series Test, the geometric series on the right-hand side converges by hypothesis

that 0 ≤ L < r < 1. By the Direct Comparison Test, the series
∑
|an| converges, so

∑
an converges

absolutely by definition. We need only prove the remaining case (b.).

By the previous paragraph, given any real number ε > 0, there exists a real number M such

that for all integers n ≥ M, we have that |an+1/an| > L− ε = r. Given that L > 1, we can ensure

that r > 1 by taking ε to be sufficiently small. By a similar argument as before, it follows that

|aM+n| > |aM |rn. Considering that r > 1, it follows that

lim
n→∞
|an| = lim

n→∞
|aM+n| > lim

n→∞
|aM |rn = |aM | lim

n→∞
rn =∞.

Consequently, we have that lim
n→∞

an 6= 0, hence
∑
an diverges by the Divergence Test.

Example 63. Use the Ratio Test to determine if the series
∑∞

n=0
en

n!
converges.

Example 64. Use the Ratio Test to determine if the series
∑∞

n=1
nn

(n2)!
converges.

Power Series and Taylor Series

Recall from precalculus that a polynomial of degree n is a function of the form a0 +a1x+ · · ·+anx
n

for some real numbers a0, a1, . . . , an such that an is nonzero and ai is the coefficient of the monomial

xi of degree i for each integer 0 ≤ i ≤ n. We refer to the monomials aix
i as terms of the polynomial.

Using the notion of infinite series, we obtain a generalization of polynomials that allows us to include

terms of arbitrarily large degree. Explicitly, we define the power series

f(x) =
∞∑
k=0

ak(x− c)k = a0 + a1(x− c) + a2(x− c)2 + · · ·+ an(x− c)n + · · · .

We refer to the constant c as the center of the power series. Observe that a polynomial is nothing

more than a power series for which only finitely many of the coefficients ai are nonzero.

Convergence of a power series depends not only on its sequence ak of coefficients but also on

its center c. For instance, the power series with ak = k and c = 0 converges for x = 1
2

but not for

x = 1, and the power series with ak = k and c = 1
2

converges for x = 0 but not for x = 1
2
.

Example 65. Prove that the power series
∞∑
k=0

kxk converges for x =
1

2
and diverges for x = 1.

Hint: Use the Ratio Test for x =
1

2
and the Divergence Test for x = 1.

Convergence of Power Series. Given any power series f(x) =
∞∑
k=0

ak(x− c)k, there exists an

extended real number R ≥ 0 called the radius of convergence with the property that

(a.) f(x) converges for all x such that |x− c| < R and

(b.) f(x) diverges for all x such that |x− c| > R.
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We refer to the interval I = (c−R, c+R) on which f(x) converges as the interval of convergence.

Given that R =∞, then f(x) converges for all real numbers x, i.e., I = (−∞,∞). Given that R = 0,

then f(x) diverges for all real numbers x 6= c and f(x) converges for x = c, i.e., I = {c}.

Caution: this theorem does not say anything about the convergence of the power series f(x) when

x = c−R or x = c+R for a finite, nonzero R; rather, we must test for convergence at these points.

Unfortunately, the theorem does not give us a road map for finding the radius of convergence R,

either. Often, we will employ the Ratio Test to this end, as it works quite well for power series.

Example 66. Find the radius and interval of convergence of the power series
∞∑
n=0

xn

n!
.

Hint: Proceed by the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1 ·
1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ xn · n!
∣∣∣∣ (Group like terms.)

= |x| lim
n→∞

n!

(n+ 1)!
(Cancel, and pull out constants.)

= |x| lim
n→∞

n!
(Write n! as a factor of (n+ 1)!.)

= |x| lim
n→∞

1

n+ 1
(Cancel common factors.)

= 0.

Conclude that regardless of the value of x, the power series in question converges. Consequently,

the radius of convergence is R = and the interval of convergence is I = .

Example 67. Find the radius and interval of convergence of the power series
∞∑
n=0

(−1)n(x− 3)n

3n
.

Hint: Observe that we can view this power series as a geometric series with common ratio

r = .

Conclude by the Geometric Series Test that the power series converges if and only if |r| < 1.

Consequently, the radius of convergence is R = and the interval of convergence is I = .

21



Example 68. Find the radius and interval of convergence of the power series
∞∑
n=0

nnxn.

Given real numbers c and r such that |r| < 1, we have that

∞∑
n=0

crn =
c

1− r
.

By analogy, given a function f(x) such that |f(x)| < 1, we find that

∞∑
n=0

c[f(x)]n =
c

1− f(x)
.

Consequently, we have obtained a power series identity for any function of the form
c

1− f(x)
for

some function f(x) that is valid for all real numbers x such that |f(x)| < 1.

Example 69. Use the geometric series to find a power series identity for the following functions;

then, state the radius and interval of convergence for each power series.

(a.)
1

1− x

(b.)
1

1 + x

(c.)
1

1 + x2

One of the most useful features of power series is that we may differentiate them term-by-term.

Power Series Are Differentiable. Consider the power series f(x) =
∞∑
k=0

ak(x− c)k with radius

of convergence R > 0.

(i.) We have that f(x) is differentiable on the interval I = (c−R, c+R) with derivative

f ′(x) =
d

dx
f(x) =

d

dx

∞∑
k=0

ak(x− c)k =
∞∑
k=0

ak
d

dx
(x− c)k =

∞∑
k=1

kak(x− c)k−1.

Consequently, f ′(x) is a power series, and its radius of convergence is R.

(ii.) We have that the antiderivative of f(x) on the interval I = (c−R, c+R) is given by

F (x) + C =

∫
f(x) dx =

∫ ∞∑
k=0

ak(x− c)k dx =
∞∑
k=0

ak

∫
(x− c)k dx =

∞∑
k=0

ak
k + 1

(x− c)k+1.

Consequently, F (x) + C =
∫
f(x) dx is a power series, and its radius of convergence is R.

We note that in practice, the constant C can be found by used the fact that F (c) + C = 0.
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Example 70. Use Example 69 to find a power series identity for the following functions; then,

state the radius and interval of convergence for each power series.

(a.)
1

(1− x)2

(b.) ln|1 + x|

(c.) arctan x

Our exploration into power series thus far has given us an infinite series expansion for any function

of the form g(x) = c
1−f(x) for some real number c and function f(x). Considering this as a geometric

series, we have also found that this power series identity is valid for all real numbers x such that

|f(x)| < 1. By the fact above, this series can be (anti)differentiated for all x such that |f(x)| < 1,

hence we are able to obtain a power series expression for any (anti)derivative of g(x) = c
1−f(x) .

One immediate consequence of all of this is that we are now able to approximate (via power

series) the value of previously unknown quantities. By Example 70(c.), we have that

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
.

Using the fact that arctan(1) = π
4
, we have a representation of π

4
as the infinite series

π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

Consequently, we can approximate π
4

to any desired degree of accuracy, i.e., we can write the decimal

expansion of π
4

that is accurate to as many decimal places as desired!

Certainly, we should view this as a generalization of linearization from Calculus I. Given a

differentiable function f(x) on an open interval (a, b) and a real number a < c < b, we have that

f(x) ≈ f(c) + f ′(c) · (x− c)

for |x−c| sufficiently small by the limit definition of the derivative. We refer to the linear polynomial

T1(x) = f(c) + f ′(c)(x− c) as the linearization of f(x) at x = c. Considering that T1(c) = f(c) and

T ′1(c) = f ′(c), we say that T1(x) is a first-order (or linear) approximation of f(x) at x = c. Observe

that for the power series f(x) =
∑∞

k=0 ak(x− c)k, we have that

f(c) = a0 = 0! · a0,
f ′(c) = a1 = 1! · a1,
f ′′(c) = 2a2 = 2! · a2,
f ′′′(c) = 6a3 = 3! · a3,

and in general, we have that f (n)(c) = n! · an. Consequently, we may obtain an nth-order approxi-

mation of f(x) at x = c by generalizing degree 1 polynomial T1(x) to the degree n polynomial

Tn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n.
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Example 71. Prove that Tn(x) is an nth-order approximation of f(x) at x = c.

Hint: By definition, we must show that Tn(c) = f(c), T ′n(c) = f ′(c), T ′′n (c) = f ′′(c), and in general,

the kth derivative of Tn(x) evaluated at x = c is equal to kth derivative of f(x) evaluated at x = c

for all integers 0 ≤ k ≤ n. Explicitly, we must show that

dk

dxk
Tn(x)

∣∣∣∣
x=c

=
dk

dxk
f(x)

∣∣∣∣
x=c

for all integers 0 ≤ k ≤ n.

We refer to the polynomial Tn(x) of degree n as the nth Taylor polynomial of f(x) centered at

x = c. Crucially, we observe that the nth Taylor polynomial of f(x) centered at x = c satisfies

Tn(x) = Tn−1(x) +
f (n)(c)

n!
(x− c)n =

n∑
k=0

f (k)(c)

k!
(x− c)k.

Uniqueness of Taylor Polynomials. The nth Taylor polynomial of f(x) centered at x = c is

the unique polynomial of degree (at most) n that approximates f(x) to order n at x = c.

We shall soon see that many of the familiar functions from Calculus I can be written as power

series: ex, sinx, and cosx all have power series expansions that converge for all real numbers x! Our

aim is to generalize the nth Taylor polynomial Tn(x) to a power series, but before we get there, we

must first master the technique of writing the nth derivative of a function in a closed form.

Example 72. Give a closed form for the sequence an = f (n)(x) of derivatives of f(x) = ex. Use

this to find the nth Taylor polynomial Tn(x) of ex centered at x = 0.

Example 73. Give a closed form for the sequence an = f (n)(x) of derivatives of f(x) = cos x. Use

this to find the nth Taylor polynomial Tn(x) of cosx centered at x = 0.

Of course, we have said all along that our aim has been to use power series to approximate, and as

with any approximation, there is some amount of error involved.

Error Bound Theorem. Consider a function f(x) such that f (n+1)(x) exists and is continuous.

Let K be any real number such that |f (n+1)(u)| ≤ K for all u between c and x. We have that

|f(x)− Tn(x)| ≤ K · |x− c|
n+1

(n+ 1)!
,

where Tn(x) is the nth Taylor polynomial of f(x) centered at x = c.

Example 74. Use the Error Bound Theorem to find the maximum error in approximating e2 with

f(x) = ex and the fourth Taylor polynomial T4(x) centered at x = 0.

Example 75. Use the Error Bound Theorem to find an integer n ≥ 0 such that

|cos(1)− Tn(1)| ≤ 1

1000
.
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Consider a function f(x) such that f (n)(x) exists and is continuous for all integers n ≥ 0 and all

real numbers x in some interval I. Let K be a real number such that |f (n)(x)| ≤ K for all integers

n ≥ 0 and all real numbers x in I. By Example 36 and the Error Bound Theorem, we have that

lim
n→∞
|f(x)− Tn(x)| ≤ lim

n→∞
K · |x− c|

n+1

(n+ 1)!
= K · lim

n→∞

|x− c|n+1

(n+ 1)!
= 0.

Consequently, as the degree n grows arbitrarily large, the error in approximating f(x) via its nth

Taylor polynomial centered at x = c converges to 0. Further, observe that

lim
n→∞

Tn(x) = lim
n→∞

n∑
k=0

f (k)(c)

k!
(x− c)k =

∞∑
k=0

f (k)(c)

k!
(x− c)k = T (x)

is a power series. We refer to T (x) as the Taylor series of f(x) centered at x = c. Conveniently, if

a function f(x) is represented by a power series centered at x = c in an interval (c− R, c + R) for

some real number R > 0, then that power series is the Taylor series of f(x) centered at x = c.

Uniqueness of Taylor Series. The Taylor series of f(x) centered at x = c is the unique power

series representation (if it exists) of a function in an interval (c−R, c+R) with R > 0.

Caution: this theorem does not guarantee that a function has a power series representation; rather,

it says that if f(x) has a power series expansion at x = c, then it must be the Taylor series.

We refer to the Taylor series expansion of f(x) centered at x = 0 as the Maclaurin series of f(x).

Example 76. Use Example 72 to find the Maclaurin series for f(x) = ex.

Example 77. Use Example 73 to find the Maclaurin series for f(x) = cos x.

Example 78. Use Example 77 to find the Maclaurin series for f(x) = sinx.

Our next fact takes care (in part) of the proviso under “Uniqueness of Taylor Series.”

Convergence of Taylor Series. Given real numbers c and R > 0, consider the open interval

I = (c − R, c + R). Consider a function f(x) such that f (n)(x) exists and is continuous for all

integers n ≥ 0 and all x in I. If there exists a real number K such that |f (n)(x)| ≤ K for all integers

n ≥ 0 and all x in I, then the Taylor series of f(x) centered at x = c converges to f(x), i.e.,

f(x) =
∞∑
n=0

f (n)(x)

n!
(x− c)n.

Example 79. Use Examples 76, 77, and 78 in addition to the above fact to find the power series

expansions of ex, cosx, and sinx. Determine the radius and interval of convergence for each of these.

Once we know the Taylor series expansion of some function f(x) centered at x = c, it is quite easy

to find the Taylor series expansion of xif(x) or f(x)
xi

for some integers i ≥ 1 and the composite

function g ◦ f(x) for some functions g(x) because Taylor series play well with function composition;

however, it is possible to change the center of a Taylor series when performing these operations.
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Example 80. Use Example 79 to find the Taylor series of the following; then, state their centers.

(a.) f(x) = x3 cosx

(b.) g(x) = e1−x
2

(c.) h(x) = ex−4

(d.) k(x) =
x− sinx

x

One of the most ingenious uses of power series is to compute limits and to find power series repre-

sentations for the antiderivatives of certain functions that lack elementary antiderivatives.

Example 81. Verify that L’Hôpital’s Rule can be used to compute the limit

lim
x→0

x− sinx

x3 cosx
;

then, explain the difficulty in doing so. Ultimately, compute the limit using power series.

Example 82. Explain the difficulty in trying to find the antiderivative of sin(x2); then, compute

the power series expansion of the antiderivative sin(x2), and state its radius of convergence.

Example 83. Explain the difficulty in trying to find the antiderivative of e1−x
2
; then, compute the

power series expansion of the antiderivative e1−x
2
, and state its radius of convergence.

The Area Between Curves

Our introduction to the notion of integration already gave us an interpretation of the definite

integral
∫ b
a
f(x) dx as the (signed) area between the curve f(x) and the x-axis. Consequently, there

are myriad benefits of using a definite integral to capture information about real-life observations:

if we can relate a function f(x) to its antiderivative F (x) by observing that f(x) is the rate of

change of F (x), then the definite integral
∫ b
a
f(x) dx = F (b) − F (a) measures the total change of

the function F (x) from a point x = a to a point x = b. For instance, if f(t) is the velocity of a ball

observed from time t = a to t = b, then the definite integral
∫ b
a
f(t) dt = F (b) − F (a) is the total

distance travelled by the ball during the time frame in which we observed it.

Crucially, we can view the x-axis as the curve y = g(x) = 0, hence if our function f(x) satisfies

f(x) ≥ g(x) = 0 for all a ≤ x ≤ b, then the definite integral
∫ b
a
f(x) dx =

∫ b
a
[f(x) − g(x)] dx

measures the area between the curve f(x) and g(x). Generalizing this notion gives us a way to

measure the area between any two curves f(x) and g(x) satisfying f(x) ≥ g(x) for all a ≤ x ≤ b.

The Area Between Two Curves. Consider the region R cut out by the functions f(x) and g(x)

that satisfy f(x) ≥ g(x) for all a ≤ x ≤ b. We have that

area(R) =

∫ b

a

[f(x)− g(x)] dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.
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Pictorially, we have the following setup.

We outline the method to find the area bounded by the curves f1(x), f2(x), x = a, and x = b.

(1.) Choose several appropriate x-values for the function f1(x), i.e., values of x for which you know

(or can easily approximate and accurately plot) the point (x, f1(x)). Use the general rule that

if f1 is a polynomial of degree n, it is best to choose n+ 1 different x-values to plot f1(x).

(2.) Plot the corresponding points (x, f1(x)), and use these to sketch the graph of f1(x).

(3.) Repeat points (1.) and (2.) for f2(x).

(4.) Label the top function as f(x) and the bottom function as g(x) based on the graphs.

(5.) Use the above fact to compute the area of R.

Example 84. Compute the area of the region R cut out by the curves f(x) = −x2 + 4 and

g(x) = x2 − 4 for all −2 ≤ x ≤ 2.

Example 85. Compute the area of the region R cut out by the curves f(x) = 2x+ 1 and g(x) =

2x − 4 for all −1 ≤ x ≤ 2. Explain how one can use geometry to verify that this area is correct.

Last, discuss what would happen if we were not given values of a and b such that a ≤ x ≤ b.

Example 86. Compute the area of the region R cut out by the curves f(x) =
√
x and g(x) = x2.

Hint: First, find real numbers a and b such that f(x) ≥ g(x) or g(x) ≥ f(x) for all a ≤ x ≤ b.

One can accomplish this by checking when f(x) = g(x). Once this is finished, check by inspection

whether f(x) ≥ g(x) or g(x) ≥ f(x) for all a ≤ x ≤ b.

Consider a region R in the Cartesian plane R2. Quite generally, we say the region R is vertically

simple if there exist functions f1(x) and f2(x) and real numbers a and b such that f1(x) ≤ y ≤ f2(x)

for all a ≤ x ≤ b. Graphically, the function f1(x) is the “bottom” function, and the function f2(x)

is the “top” function, so colloquially, we refer to f1(x) as ybottom and f2(x) as ytop.
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The Area of a Vertically Simple Region. Given a vertically simple region R cut out by the

functions ytop = f(x) and ybottom = g(x) for all a ≤ x ≤ b, we have that

area(R) =

∫ b

a

(ytop − ybottom) dx =

∫ b

a

[f(x)− g(x)] dx.

Our regions have been thus far vertically simple, hence we have been able to compute their areas

using the above formula. Unfortunately, there exist regions that are not vertically simple.

Example 87. Prove that the region R cut out by the curves y = x, y = −x, and y = −2 is not

vertically simple; then, write the regionR as the union of two vertically simple regionsR = R1∪R2,

and find the area of R by using the fact that area(R1 ∪ R2) = area(R1) + area(R2). Check that

your final answer is correct using elementary geometry.

Hint: On the contrary, if R were vertically simple, then there would exist well-defined curves ytop
and ybottom for all a ≤ x ≤ b. Prove that this is not the case by exhibiting two intervals a ≤ x ≤c

and c ≤ x ≤ b such that the ytop curves are not the same on both intervals. Use the fact that on

each interval a ≤ x ≤ c and c ≤ x ≤ b, there are well-defined curves ytop and ybottom to show that

R = R1 ∪R2 for some vertically simple regions R1 with a ≤ x ≤ c and R2 with c ≤ x ≤ b.

We have just exhibited a region R that is not vertically simple; however, if we were to change the

names of x and y, then we would find that our region is simple. Explicitly, we say that the region R
is horizontally simple if there exist functions g1(y) and g2(y) and real numbers c and d such that

g1(y) ≤ x ≤ g2(y) for all c ≤ y ≤ d. Graphically, the function g1(y) is the “left” function, and the

function g2(y) is the “right” function, so colloquially, we refer to g1(y) as xleft and g2(y) as xright.

The Area of a Horizontally Simple Region. Given a horizontally simple region R cut out by

the functions xright = f(y) and xleft = g(y) for all c ≤ y ≤ d, we have that

area(R) =

∫ d

c

(xright − xleft) dy =

∫ d

c

[f(y)− g(y)] dy.

Example 88. Prove that the region R of Example 87 is horizontally simple by exhibiting well-

defined curves xleft and xright for all c ≤ y ≤ d; then, compute the area of R.

On the other hand, it is possible for function to be both vertically and horizontally simple.

Example 89. Describe the region in Example 86 as horizontally simple. List any observations you

have about your description of the region; then, compute its area.

Hint: Exhibit well-defined curves xright = g2(y) and xleft = g1(y) for all c ≤ y ≤ d.

Likewise, it is possible for a region to be neither vertically nor horizontally simple.

Example 90. Prove that the region R enclosed by the curves y = x − 2, y = 2 − x, y = −x + 2,

and y = −x− 2 is neither vertically nor horizontally simple.
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Hint: Use the symmetry of R to argue that it suffices to check only that R is not vertically (or

horizontally) simple; then, proceed to show that R is not vertically (or horizontally) simple.

Our above exposition completely determines how to compute the area of a region as soon as we can

identify it as vertically or horizontally simple; however, there remains some nuance to these types of

problems. Our previous example establishes the existence of regions that are neither vertically nor

horizontally simple, so the question remains as to how we deal with these. One strategy is to break

up such a region into subregions that are either vertically or horizontally simple. (Later, in Calculus

III, we will learn the change of variables method that will make this issue more manageable.)

On the other hand, it is also completely possible that we are handed a region that is both

vertically and horizontally simple, and the description of the region as vertically simple makes the

integral very difficult to compute. Our best bet in this case is to check the description of the region

as horizontally simple and hope that the integrand works out to be nicer in this lens.

Example 91. Compute −
∫ 1

0
lnx dx by viewing it as the area of some region R.

Hint: Considering that ln(x) ≤ 0 for all 0 < x ≤ 1, it follows that −
∫ 1

0
lnx dx is the area of

the region R bounded by the curves y = 0, y = lnx, x = 0, and x = 1. Can we describe R as

horizontally simple? If so, then we would have that −
∫ 1

0
lnx dx =

∫ d
c

(xright − xleft) dy.

Volume, Density, and Average Value

By the previous section, given a region R bounded by several curves, we can find the area of R by

viewing the region as the union of some vertically (or horizontally) simple subregions and summing

up the respective areas of each region. Consequently, we might suspect that a similar approach

would work to compute the volume of a three-dimensional solid.

Explicitly, consider a three-dimensional solid S. By taking n vertical slices of S of equal width

∆x and examining the resulting cross sections of S, we can approximate the volume of S by

volume(S) ≈
n∑
k=1

area(Sk)∆x,

where area(Sk) is the cross-sectional area of the kth slice Sk of S. For instance, if we have a

sphere S of radius R = 1, then we can take n vertical slices of the sphere. Each slice Sk is a circle

of radius rk(x), hence we have that area(Sk) = π[rk(x)]2 and ∆x = 1−(−1)
n

= 2
n
. We know from

precalculus that the volume of the sphere of radius R is 4
3
πR3, and we will soon demonstrate this.

By viewing the above sum as a Riemann sum and taking the limit as n approaches∞, we have that

volume(S) =

∫ b

a

area(S) dx,

where area(S) is the cross-sectional area of any slice of S.

Example 92. Prove that the volume of a sphere of radius R > 0 is 4
3
πR3.
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Hint: By the paragraph above, we can use the formula for the volume by cross-sectional area. Our

cross sections may be taken vertically (i.e., perpendicular to the x-axis). Each of these is a circle

of radius r(x). Prove that r(x) =
√
R2 − x2 by using the Pythagorean Theorem on the diagram

below; then, use the fact that area(S) = π[r(x)]2 and the formula above to finish.

Example 93. Prove that the volume of a right-circular cone of radius R and height H is 1
3
πR2H.

Hint: By the paragraph above, we can use the formula for the volume by cross-sectional area.

Observe that the horizontal cross sections of a right-circular cone C of radius R and height H are

circles of radius r(y). Prove that r(y) = R
H

(H − y) by using similar triangles on the diagram below;

then, use the fact that area(C) = π[r(y)]2 and the formula above to finish.

Recall from physics that the mass m of an object of length ` and constant lineal density ρ is given

by m = ρ · `. Of course, not all objects have constant density: a pencil might be more dense toward
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its point and less dense toward its eraser for improved comfort when writing. Consequently, we

can describe its lineal density as a function ρ(x), where x measures the distance from the tip of the

pencil to its eraser. One natural question arises: “What is the mass of this pencil?”

Like usual, if we break the pencil P of length b− a up into n vertical slices of equal width ∆x,

then we can approximate the mass of P by the Riemann sum

mass(P) ≈
n∑
k=1

ρ(Pk)∆x,

where ρ(Pk) is the lineal density of a point Pk in the kth slice of P . By taking the limit as the

number of points n tends to ∞, we reduce our error to zero, and we obtain

mass(P) =

∫ b

a

ρ(x) dx.

Example 94. Compute the total mass of a rod of length 1 unit and lineal density ρ(x) = xex
2
.

Given a list of n values a1, . . . , an, recall that the average of these values is given by

a1 + · · ·+ an
n

=
1

n

n∑
k=1

ak.

Consequently, we may use this approach if we wish to approximate the average value of a function

f(x) that is integrable on a closed interval [a, b]. Explicitly, we may choose n values f(x1), . . . , f(xn)

for some equally-spaced real numbers a = x1 ≤ · · · ≤ xn = b. Using the fact that ∆x = b−a
n

is the

distance between any two consecutive x-values, our above displayed equation gives that

average value of f(x) on [a, b] ≈ 1

n

n∑
k=1

f(xk) =
1

b− a
· b− a

n

n∑
k=1

f(xk) =
1

b− a

n∑
k=1

f(xk)∆x.

By recognizing this as a Riemann sum as taking the limit as n→∞, we find that

average value of f(x) on [a, b] =
1

b− a

∫ b

a

f(x) dx.

Example 95. Compute the average value of the function f(x) = x−1 on the interval
[
1
e
, 1
]
.

One of the most important applications of the average value of a function is the following.

The Mean Value Theorem for Integrals. Consider a function f(x) that is continuous (and

therefore integrable) on a closed interval [a, b]. There exists a real number a ≤ c ≤ b such that

f(c) =
1

b− a

∫ b

a

f(x) dx.

Example 96. Consider a car travelling with a velocity of v(t) units per minute. Prove that if the

car enters a 325 unit-long tunnel at t = 0 minutes and exits at t = 4 minutes and the speed limit in

the tunnel is 80 units per minute, then the car broke the speed limit at some point in the tunnel.
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