MATH 126: Inverse Trigonometric Functions

Dylan C. Beck

Fall 2020

We will compute the derivatives and antiderivatives of the inverse trigonometric functions. We will first set up a right triangle with $\sin \theta = x$. By definition, we have that $\arcsin x = \theta$ so that

$$\frac{d}{dx}\arcsin x = \frac{d\theta}{dx}.$$

Observe that $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$, so we may declare that opposite = x and hypotenuse = 1 in order to obtain $\sin \theta = x$. Our triangle therefore looks like the following.

By the Pythagorean Theorem, we have that $a^2 + b^2 = c^2$, hence we must have that $b = \sqrt{1 - x^2}$.

Using the Chain Rule, we can compute $\frac{d\theta}{dx}$. Explicitly, we have that

$$\cos\theta \cdot \frac{d\theta}{dx} = \frac{d}{dx}\sin\theta = \frac{d}{dx}x = 1$$
 so that

$$\frac{d}{dx} \arcsin x = \frac{d\theta}{dx} = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1-x^2}}.$$

Example 1. Use a right triangle involving 1, x, and $\sqrt{1-x^2}$ to compute $\frac{d}{dx} \arccos x$.

Solution. Blah, blah, blah.

Using a similar idea as the one we employed to compute the derivative of $\arcsin x$ and $\arccos x$, we will set up a triangle with $\tan \theta = x$. Observe that $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$, so we may declare that opposite = x and adjacent = 1. Our triangle therefore looks like the following.

 \diamond

 \diamond

Once again, by the Pythagorean Theorem, we find that $c = \sqrt{1 + x^2}$.

Using the Chain Rule, we can compute $\frac{d\theta}{dx}$. Explicitly, we have that

$$\sec^2 \theta \cdot \frac{d\theta}{dx} = \frac{d}{dx} \tan \theta = \frac{d}{dx} x = 1 \text{ so that}$$
$$\frac{d}{dx} \arctan x = \frac{d\theta}{dx} = \cos^2 \theta = \frac{1}{1+x^2}.$$

Example 2. Use a right triangle involving 1, x, and $1 + x^2$ to compute $\frac{d}{dx} \operatorname{arccot} x$.

Solution. Blah, blah, blah.

Last but not least, we will set up a triangle with $\sec \theta = x$. Observe that $\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$, so we may declare that hypotenuse = x and adjacent = 1. Our triangle therefore looks like the following.

Once again, by the Pythagorean Theorem, we find that $a = \sqrt{x^2 - 1}$.

Using the Chain Rule, we can compute $\frac{d\theta}{dx}$. Explicitly, we have that

$$\sec \theta \tan \theta \cdot \frac{d\theta}{dx} = \frac{d}{dx} \sec \theta = \frac{d}{dx}x = 1$$
 so that

$$\frac{d}{dx}\operatorname{arcsec} x = \frac{d\theta}{dx} = \cos\theta\cot\theta = \frac{1}{x\sqrt{x^2 - 1}}$$

Example 3. Use a right triangle involving 1, x, and $1 + x^2$ to compute $\frac{d}{dx} \operatorname{arccsc} x$. Solution. Blah, blah, blah.

 \diamond