MATH 126: Inverse Trigonometric Functions

Dylan C. Beck

Fall 2020

We will compute the derivatives and antiderivatives of the inverse trigonometric functions. We will first set up a right triangle with $\sin \theta=x$. By definition, we have that $\arcsin x=\theta$ so that

$$
\frac{d}{d x} \arcsin x=\frac{d \theta}{d x}
$$

Observe that $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$, so we may declare that opposite $=x$ and hypotenuse $=1$ in order to obtain $\sin \theta=x$. Our triangle therefore looks like the following.

By the Pythagorean Theorem, we have that $a^{2}+b^{2}=c^{2}$, hence we must have that $b=\sqrt{1-x^{2}}$.

Using the Chain Rule, we can compute $\frac{d \theta}{d x}$. Explicitly, we have that

$$
\begin{gathered}
\cos \theta \cdot \frac{d \theta}{d x}=\frac{d}{d x} \sin \theta=\frac{d}{d x} x=1 \text { so that } \\
\frac{d}{d x} \arcsin x=\frac{d \theta}{d x}=\frac{1}{\cos \theta}=\frac{1}{\sqrt{1-x^{2}}} .
\end{gathered}
$$

Example 1. Use a right triangle involving $1, x$, and $\sqrt{1-x^{2}}$ to compute $\frac{d}{d x} \arccos x$.
Solution. Blah, blah, blah.
Using a similar idea as the one we employed to compute the derivative of $\arcsin x$ and $\arccos x$, we will set up a triangle with $\tan \theta=x$. Observe that $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$, so we may declare that opposite $=x$ and adjacent $=1$. Our triangle therefore looks like the following.

Once again, by the Pythagorean Theorem, we find that $c=\sqrt{1+x^{2}}$.

Using the Chain Rule, we can compute $\frac{d \theta}{d x}$. Explicitly, we have that

$$
\begin{gathered}
\sec ^{2} \theta \cdot \frac{d \theta}{d x}=\frac{d}{d x} \tan \theta=\frac{d}{d x} x=1 \text { so that } \\
\frac{d}{d x} \arctan x=\frac{d \theta}{d x}=\cos ^{2} \theta=\frac{1}{1+x^{2}} .
\end{gathered}
$$

Example 2. Use a right triangle involving $1, x$, and $1+x^{2}$ to compute $\frac{d}{d x} \operatorname{arccot} x$.
Solution. Blah, blah, blah.
Last but not least, we will set up a triangle with $\sec \theta=x$. Observe that $\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}$, so we may declare that hypotenuse $=x$ and adjacent $=1$. Our triangle therefore looks like the following.

Once again, by the Pythagorean Theorem, we find that $a=\sqrt{x^{2}-1}$.

Using the Chain Rule, we can compute $\frac{d \theta}{d x}$. Explicitly, we have that

$$
\begin{gathered}
\sec \theta \tan \theta \cdot \frac{d \theta}{d x}=\frac{d}{d x} \sec \theta=\frac{d}{d x} x=1 \text { so that } \\
\frac{d}{d x} \operatorname{arcsec} x=\frac{d \theta}{d x}=\cos \theta \cot \theta=\frac{1}{x \sqrt{x^{2}-1}} .
\end{gathered}
$$

Example 3. Use a right triangle involving $1, x$, and $1+x^{2}$ to compute $\frac{d}{d x} \operatorname{arccsc} x$.
Solution. Blah, blah, blah.

