MATH 126: Exponential and Logarithmic Functions

Dylan C. Beck

Fall 2020

We will compute the derivatives and antiderivatives of the exponential and logarithmic functions. We will assume that the derivatives

$$
\frac{d}{d x} e^{x}=e^{x} \text { and } \frac{d}{d x} \ln |x|=\frac{1}{x}
$$

are known. Given a real number $a>0$, the exponential function $f(x)=a^{x}$ is differentiable for all real numbers x. Further, observe that $y=a^{x}$ is strictly positive for all x, hence the function $\ln y=x \ln a$ is well-defined. Using the Chain Rule, we find that

$$
\begin{gathered}
\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d}{d x} \ln y=\frac{d}{d x}(x \ln a)=\ln a \cdot \frac{d}{d x} x=\ln a \text { so that } \\
\frac{d}{d x} a^{x}=\frac{d}{d x} y=\frac{d y}{d x}=y \ln a=a^{x} \ln a .
\end{gathered}
$$

Example 1. Compute the derivative of $y=\log _{a} x$ by using the fact that $a^{y}=x$.
Solution. Blah, blah, blah.

