Classical Trigonometric Limits

Dylan C. Beck

29 August 2018

We present two classical trigonometric limits, proving one of them; the other is left to the reader.
Theorem. We have that $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$.
Proof. Given any angle θ in ($\left.0, \frac{\pi}{2}\right]$, it can be shown geometrically that $\sin (\theta) \leq \theta \leq \tan (\theta)$. By dividing each term in this inequality by $\sin (\theta)$, we have that

$$
1 \leq \frac{\theta}{\sin (\theta)} \leq \frac{1}{\cos (\theta)}
$$

from which it follows by inverting each term that we have

$$
\cos (\theta) \leq \frac{\sin (\theta)}{\theta} \leq 1
$$

By taking the limit of each term, we conclude (by Squeeze Theorem) that $\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta}=1$. By a similar analysis for θ in $\left[-\frac{\pi}{2}, 0\right)$, we have that $\lim _{\theta \rightarrow 0^{-}} \frac{\sin (\theta)}{\theta}=1$ so that $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$.

Theorem. We have that $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=0$.
Proof. We leave the proof to the reader.

