Practice Algebra Qual II

August 2020

We adopt the shorthand notation $\mathbb{Z}_{n} \stackrel{\text { def }}{=} \mathbb{Z} / n \mathbb{Z}$.
1.) Prove that \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are the only groups of order four (up to isomorphism) without appealing to the Fundamental Theorem of Finitely Generated Abelian Groups.
2.) Given a commutative unital ring R, consider the ring of Laurent polynomials $R\left[t, t^{-1}\right]$.
(a.) Prove that $R\left[t, t^{-1}\right] \cong R[x, y] /(x y-1)$.
(b.) Prove that if k is a field, then $k\left[t, t^{-1}\right]$ is a principal ideal domain.
(c.) Prove that if k is a field, then $k\left[t, t^{-1}\right]$ is a Euclidean domain.
3.) Let p be an odd prime number.
(a.) Prove that for any integer a such that $a \not \equiv 0(\bmod p)$, the congruence $x^{2} \equiv a(\bmod p)$ has a solution in \mathbb{Z} if and only if $a^{(p-1) / 2} \equiv 1(\bmod p)$.
(b.) Using part (a.), determine whether or not the polynomial $x^{2}-6$ is irreducible in $\mathbb{Z}_{17}[x]$.
4.) Consider a field k whose multiplicative group k^{\times}of units is cyclic. Prove that k is finite.
5.) Consider the 3×3 matrices A and B with entries in \mathbb{C} (the complex numbers). Prove that

$$
\operatorname{det}(A B-B A)=\frac{1}{3} \operatorname{trace}\left[(A B-B A)^{3}\right]
$$

6.) Given the vector space V of 2×2 real matrices, consider the linear transformation $T_{A}: V \rightarrow V$ defined by $T_{A}(B)=A B A^{-1}$ for some invertible 2×2 real matrix A. Given that

$$
A=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

find with proof the Jordan Canonical Form of the linear transformation T_{A}.

