Practice Algebra Qual I

August 2020
1.) Consider a group G. We define the commutator of two elements a and b of G to be the element $[a, b]=a b a^{-1} b^{-1}$ of G. Consider the commutator subgroup of G defined by

$$
[G, G]=\left\{\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \mid a_{i}, b_{i} \in G \text { and } n \geq 0 \text { is an integer }\right\} .
$$

(a.) Prove that $[G, G]$ is normal in G.
(b.) Prove that $G /[G, G]$ is abelian.
(c.) Given a normal subgroup N of G such that G / N is abelian, prove that $[G, G] \subseteq N$.
2.) Consider an infinite commutative unital ring R such that $|R / I|<\infty$ for every nonzero ideal I of R. Prove that R is an integral domain.
3.) Using Eisenstein's Criterion, one can prove that the cyclotomic polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is irreducible over \mathbb{Q} for every prime p. Given a root ζ of $\Phi_{p}(x)$, consider the field $\mathbb{Q}(\zeta)$.
(a.) Prove that the set $\left\{\zeta, \zeta^{2}, \ldots, \zeta^{p-1}\right\}$ consists of distinct roots of $\Phi_{p}(x)$. Conclude that these are precisely all of the zeros of $\Phi_{p}(x)$.
(b.) Prove that the set G of all field automorphisms $\varphi: \mathbb{Q}(\zeta) \rightarrow \mathbb{Q}(\zeta)$ is an abelian group with respect to composition. Further, prove that $|G|=p-1$.
(c.) Prove that the set $\{a \in \mathbb{Q}(\zeta) \mid \varphi(a)=a$ for all automorphisms $\varphi \in G\}$ is equal to \mathbb{Q}.
4.) Given an odd integer n, consider the subspace V of the vector space of $n \times n$ matrices over \mathbb{R}. Prove that if $V \backslash\{0\}$ is a subset of the multiplicative group of invertible $n \times n$ real matrices $G L(n, \mathbb{R})$, then we must have that $\operatorname{dim}_{\mathbb{R}}(V) \leq 1$.
5.) Given a positive integer n, denote by $M(n, k)$ the ring of $n \times n$ matrices over the field k. Prove that if there is a ring isomorphism $\varphi: M(n, k) \rightarrow M(m, k)$, then we must have that $m=n$.
6.) Given a field k, consider the vector space $P_{2}(k)$ of polynomials in $k[x]$ of degree ≤ 2.
(a.) Prove that the linear map $D: P_{2}(k) \rightarrow P_{2}(k)$ defined by $D(f)=f+f^{\prime}+f^{\prime \prime}$ is invertible. (b.) Find with proof the Jordan Canonical Form for D.

